Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Equilibria and global dynamics of a problem with bifurcation from infinity

Loading...
Thumbnail Image

Full text at PDC

Publication date

2009

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

We consider a parabolic equation ut−Δu+u=0 with nonlinear boundary conditions , where as |s|→∞. In [J.M. Arrieta, R. Pardo, A. Rodríguez-Bernal, Bifurcation and stability of equilibria with asymptotically linear boundary conditions at infinity, Proc. Roy. Soc. Edinburgh Sect. A 137 (2) (2007) 225–252] the authors proved the existence of unbounded branches of equilibria for λ close to a Steklov eigenvalue of odd multiplicity. In this work, we characterize the stability of such equilibria and analyze several features of the bifurcating branches. We also investigate several question related to the global dynamical properties of the system for different values of the parameter, including the behavior of the attractor of the system when the parameter crosses the first Steklov eigenvalue and the existence of extremal equilibria. We include Appendix A where we prove a uniform antimaximum principle and several results related to the spectral behavior when the potential at the boundary is perturbed.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections