Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Many-Sorted Logic

Loading...
Thumbnail Image

Full text at PDC

Publication date

2022

Advisors (or tutors)

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

Manzano, María and Víctor Aranda, "Many-Sorted Logic", The Stanford Encyclopedia of Philosophy (Winter 2022 Edition), Edward N. Zalta & Uri Nodelman (eds.), URL = <https://plato.stanford.edu/archives/win2022/entries/logic-many-sorted/>.

Abstract

Classical logic is the appropriate formal language for describing mathematical structures containing a single universe or domain of discourse. By contrast, many-sorted logic (MSL) allows quantification over a variety of domains (called sorts). For this reason, it is a suitable vehicle for dealing with statements concerning different types of objects, which are ubiquitous in mathematics, philosophy, computer science, and formal semantics. Each sort groups a unique category of objects (for example, points and straight lines are different types of objects in a 2-sorted structure). Despite the addition of this expressive resource, many-sorted logic “stays inside” first-order logic, so the main metatheorems (completeness, interpolation, and so on) can be proved. Many-sorted logic also serves as a unifying framework for translating various logical systems; for instance, some intensional and higher-order logics have natural translations into many-sorted logic. Many-sorted first-order logic can be reduced to one-sorted first-order logic, both syntactically and semantically. Many-sorted first-order logic can also be extended to a many-sorted second-order logic called “sort logic”. An axiomatic calculus for many-sorted logic was introduced by Hao Wang in Wang (1952), where he made a comparison between one-sorted and many-sorted theories. In 1967, Solomon Feferman gave a sequent calculus for many-sorted logic, proving not only its completeness but also the cut elimination and interpolation theorems (Feferman 1968). Feferman (2008) summarizes some applications of the many-sorted interpolation theorems to model theory. (See the supplement on early history for more information.) Section 1 lays out the basics of many-sorted logic, presenting some examples and explaining how the formal language, structures, and semantics differ or not from classical logic. Section 2 explains how to modify a one-sorted first-order calculus to obtain a many-sorted version; also, completeness is treated and some automated theorem provers are mentioned. Section 3 describes a plan on which many-sorted logic serves as a common framework for translating a variety of logical systems. Sections 4 and 5 apply this plan to second-order logic and non-classical logics (modal and dynamic logic), respectively. Finally, section 6 comments on further results in many-sorted logic.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections