Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

An extension based determinantal method to compute Casimir operators of Lie algebras

Loading...
Thumbnail Image

Full text at PDC

Publication date

2003

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

We present a method based on degree one extensions of Lie algebras by a derivation to compute the Casimir operator of perfect Lie algebras having only one invariant for the coadjoint representation and an Abelian radical. In particular, the Casimir operator of the special affine Lie algebras sa(n,R) results from the determinant of the commutator matrix of an extension. Examples are given for the case of non-Abelian radicals, and the corresponding generalization of the method for this case is formulated.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections