Social network analysis: a novel paradigm for improving community detection

dc.contributor.authorHernández, Rodrigo
dc.contributor.authorGutiérrez García-Pardo, Inmaculada
dc.contributor.authorCastro Cantalejo, Javier
dc.date.accessioned2025-09-19T08:29:54Z
dc.date.available2025-09-19T08:29:54Z
dc.date.issued2025-04-22
dc.description.abstractSocial network analysis has become increasingly important across a wide range of fields, offering valuable insights into complex systems of interconnected entities. One of the fundamental challenges in this field is the community detection problem, which involves identifying groups within networks. Multiple algorithms have been proposed, exploring new approaches to finding solutions for cohesive partitions of the graph. One of the most considered philosophies when defining this type of technique is the use of the graph’s adjacency matrix as input and the consideration of modularity as the function to be optimized. We propose an enhancement to this approach to community detection by incorporating high-order relationships between nodes, allowing for a more comprehensive capture of network structure. By modifying the algorithm’s input, our method improves community detection accuracy. Moreover, our proposed approach is universal, applicable to any algorithm that utilizes a matrix as input. Its value is further validated through a comprehensive set of results, comparing the original problem with the enhanced method we present. We also present a tourism case study.
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.sponsorshipSecretaría de Estado de Investigacion, Desarrollo e Innovacion
dc.description.statuspub
dc.identifier.citationHernández, R., Gutiérrez, I. & Castro, J. Social Network Analysis: A Novel Paradigm for Improving Community Detection. Int J Comput Intell Syst 18, 87 (2025)
dc.identifier.doi10.1007/s44196-025-00812-9
dc.identifier.officialurlhttps://doi.org/10.1007/s44196-025-00812-9
dc.identifier.relatedurlhttps://link.springer.com/article/10.1007/s44196-025-00812-9#citeas
dc.identifier.urihttps://hdl.handle.net/20.500.14352/124134
dc.issue.number87
dc.journal.titleInternational Journal of Computational Intelligence Systems
dc.language.isoeng
dc.page.final22
dc.page.initial1
dc.publisherSpringer Nature
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu004.8
dc.subject.cdu004.7:316.77
dc.subject.cdu519.2
dc.subject.cdu51
dc.subject.keywordSocial network analysis
dc.subject.keywordCommunity detection
dc.subject.keywordGraphs
dc.subject.keywordMachine learning
dc.subject.ucmEstadística
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmInternet (Ciencias de la Información)
dc.subject.unesco1209 Estadística
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleSocial network analysis: a novel paradigm for improving community detection
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number18
dspace.entity.typePublication
relation.isAuthorOfPublication2f4cd183-2dd2-4b4e-8561-9086ff5c0b90
relation.isAuthorOfPublicatione556dae6-6552-4157-b98a-904f3f7c9101
relation.isAuthorOfPublication.latestForDiscovery2f4cd183-2dd2-4b4e-8561-9086ff5c0b90

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Social Network Analysis A Novel Paradigm for Improving Community Detection.pdf
Size:
1.58 MB
Format:
Adobe Portable Document Format

Collections