Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Stable boundary layers in a diffusion problem with nonlinear reaction at the boundary

dc.contributor.authorArrieta Algarra, José María
dc.contributor.authorCónsul, Neus
dc.contributor.authorRodríguez Bernal, Aníbal
dc.date.accessioned2023-06-20T09:46:30Z
dc.date.available2023-06-20T09:46:30Z
dc.date.issued2004
dc.description.abstractWe prove the existence of nonconstant stable stationary solutions of an evolution problem with a nonlinear reaction acting on the boundary. These solutions present layers at certain points of the boundary. We also study the behavior of these solutions as the small parameter appearing in the equation approaches zero and show some stability properties of the profiles given by these equilibrium solutions.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/18119
dc.identifier.doi10.1007/s00033-003-2063-z
dc.identifier.issn0044-2275
dc.identifier.officialurlhttp://download.springer.com/static/pdf/453/art%253A10.1007%252Fs00033-003-2063-z.pdf?auth66=1360940295_9a26f43517b93d290ff05a6bb450d133&ext=.pdf
dc.identifier.relatedurlhttp://link.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50338
dc.issue.number1
dc.journal.titleZeitschrift für Angewandte Mathematik und Physik
dc.language.isoeng
dc.page.final14
dc.page.initial1
dc.publisherSpringer Verlag
dc.relation.projectIDBFM2000-0798
dc.relation.projectIDPB98-0932-C02-01
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.keywordBoundary reaction
dc.subject.keywordPatterns
dc.subject.keywordBoundary layers
dc.subject.keywordEnergy
dc.subject.keywordMinimizers
dc.subject.keywordHeat-equations
dc.subject.keywordSpaces
dc.subject.keywordBounds
dc.subject.keywordTime
dc.subject.keywordNonconstant equilibria
dc.subject.keywordParabolic problems
dc.subject.keywordTransition layers
dc.subject.keywordEquations
dc.subject.keywordAttractors
dc.subject.keywordStability
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleStable boundary layers in a diffusion problem with nonlinear reaction at the boundary
dc.typejournal article
dc.volume.number55
dcterms.referencesS. Angenent, J. Mallet-Paret, L. Peletier, Stable transition layers in a semilinear boundary Value Problem, Journal of Differential Equations 67 (1987), 212-242. J.M. Arrieta, A.N. Carvalho and A. Rodríguez-Bernal, Parabolic problems with nonlinear boundary conditions and critical nonlinearities. Journal of Differential Equations 156 (1999), 376-406. J.M. Arrieta, A.N. Carvalho and A. Rodríguez-Bernal, Attractors of parabolic problems with nonlinear boundary conditions. Uniform bounds, Comm. in Partial Diff. Equations 25 (2000), 1-37. J.M. Arrieta, N. Cónsul, A. Rodríguez-Bernal, Pattern formation from boundary reaction, Fields Inst. Comm.31 (2002), 13-18. N. Cónsul, On equilibrium solutions of diffusion equations with nonlinear boundary conditions, Z. Angew. Math. Phys. 47 (1996), 194-209. N. Cónsul, J. Solà-Morales, Stable nonconstant equilibria in parabolic equations with nonlinear boundary conditions, C.R. Acad. Sci. Paris, T. 321, Sèrie I, (1995), 299-304. N. Cónsul, J. Solà-Morales, Stability of local minima and stable nonconstant equilibria, Journal of Differential Equations 157 (1999), 61-81. A. do Nascimento, Inner transition layers in a elliptic boundary value problem”, Nonl. Anal.: Th. Meth. and Appl. 44 (2001), 487–497. R. Casten, C. Holland, Stability properties of solutions to systems of reaction-diffusion equations, SIAM J. Appl. Math. 33 (1977), 353–364. H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci. 15 (1979), 401-451. C. Rocha, Examples of attractors in scalar reaction diffusion equations, Journal of Differential Equations 73 (1988), 178-195. Equations 73 (1988), 178-195.
dspace.entity.typePublication
relation.isAuthorOfPublication2f8ee04e-dfcb-4000-a2ae-18047c5f0f4a
relation.isAuthorOfPublicationfb7ac82c-5148-4dd1-b893-d8f8612a1b08
relation.isAuthorOfPublication.latestForDiscovery2f8ee04e-dfcb-4000-a2ae-18047c5f0f4a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RodBernal37.pdf
Size:
219.72 KB
Format:
Adobe Portable Document Format

Collections