Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Evading Vacuum Noise: Wigner Projections or Husimi Samples?

dc.contributor.authorMüller, C. R.
dc.contributor.authorPeuntinger, P.
dc.contributor.authorDirmeier, Thomas
dc.contributor.authorKhan, I.
dc.contributor.authorVogl, U.
dc.contributor.authorLeuchs, Gerd
dc.contributor.authorSánchez Soto, Luis Lorenzo
dc.contributor.authorTeo, Y. S.
dc.contributor.authorHradil, Zdenek
dc.contributor.authorŘeháček, J.
dc.date.accessioned2023-06-17T23:54:25Z
dc.date.available2023-06-17T23:54:25Z
dc.date.issued2016-08-11
dc.description© 2016 American Physical Society. We thank Herbert Welling and Sascha Wallentowitz for discussions about different aspects of optical heterodyne detection. We acknowledge financial support from the European Research Council (Advanced Grant PACART), the Spanish MINECO (Grant No. FIS2015-67963-P), the Technology Agency of the Czech Republic (Grant No. TE01020229), the Grant Agency of the Czech Republic (Grant No. 15-03194S), and the IGA Project of Palacký University (Grant No. IGA PrF 2016-005).
dc.description.abstractThe accuracy in determining the quantum state of a system depends on the type of measurement performed. Homodyne and heterodyne detection are the two main schemes in continuous-variable quantum information. The former leads to a direct reconstruction of the Wigner function of the state, whereas the latter samples its Husimi Q function. We experimentally demonstrate that heterodyne detection outperforms homodyne detection for almost all Gaussian states, the details of which depend on the squeezing strength and thermal noise.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipEuropean Research Council (ERC)
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipTechnologická agentura České republiky (TAČR) = Technology Agency of the Czech Republic, República Checa
dc.description.sponsorshipCzech Science Foundation (GACR), República Checa
dc.description.sponsorshipPalacký University (IGA Project)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/39861
dc.identifier.doi10.1103/PhysRevLett.117.070801
dc.identifier.issn0031-9007
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevLett.117.070801
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/19001
dc.issue.number7
dc.journal.titlePhysical review letters
dc.language.isoeng
dc.page.final070801_6
dc.page.initial070801_1
dc.publisherAmerican Physical Society
dc.relation.projectIDPACART (340625)
dc.relation.projectIDFIS2015-67963-P
dc.relation.projectIDTE01020229
dc.relation.projectID15-03194S
dc.relation.projectIDIGA PrF 2016-005
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordQuantum key distribution
dc.subject.keywordHeterodyne-detection
dc.subject.keywordHomodyne detection
dc.subject.keywordOptical homodyne
dc.subject.keywordState tomography
dc.subject.keywordExcess-noise
dc.subject.keywordPhase
dc.subject.keywordInformation
dc.subject.keywordUncertainties
dc.subject.keywordVariables
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleEvading Vacuum Noise: Wigner Projections or Husimi Samples?
dc.typejournal article
dc.volume.number117
dcterms.referencesC. H. Bennett and G. Brassard, in Proceedings of the International Conference on Computers, Systems and Signal Processing (IEEE, Bangalore, 1984), pp. 175–179. A. K. Ekert, Quantum Cryptography Based on Bell’S Theorem, Phys. Rev. Lett. 67, 661 (1991). C. H. Bennett, G Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an Unknown Quantum State Via Dual Classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70, 1895 (1993). http://www.idquantique.com. S. L. Braunstein and P. van Loock, Quantum information with continuous variables, Rev. Mod. Phys. 77, 513 (2005). A. Ferraro, S. Olivares, and M. G. A. Paris, Gaussian States in Continuous Variable Quantum Information (Bibliopolis, Napoli, 2005). Quantum Information with Continuous Variables of Atoms and Light, edited by N. Cerf, G. Leuchs, and E. S. Polzik (Imperial College Press, London, 2007). U. L. Andersen, G. Leuchs, and C. Silberhorn, Continuous-variable quantum information processing, Laser Photonics Rev. 4, 337 (2010). G. Adesso, S. Ragy, and A. R. Lee, Continuous variable quantum information: Gaussian states and beyond, Open Syst. Inf. Dyn. 21, 1440001 (2014). H. P. Yuen and V. W. S. Chan, Noise in homodyne and heterodyne detection, Opt. Lett. 8, 177 (1983). G. L. Abbas, V. W. S. Chan, and T. K. Yee, Local-oscillator excess-noise suppression for homodyne and heterodyne detection, Opt. Lett. 8, 419 (1983). B. L. Schumaker, Noise in homodyne detection, Opt. Lett. 9, 189 (1984). K. Vogel and H. Risken, Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase, Phys. Rev. A 40, 2847 (1989). A. I. Lvovsky and M. G. Raymer, Continuous-variable optical quantum-state tomography, Rev. Mod. Phys. 81, 299 (2009). Z. Hradil, R. Myška, T. Opatrný, and J. Bajer, Entropy of phase measurement: Quantum phase via quadrature measurement, Phys. Rev. A 53, 3738 (1996). A. Javan, E. A. Ballik, and W. L. Bond, Frequency characteristics of a continuous-wave He–Ne optical maser, J. Opt. Soc. Am. 52, 96 (1962). W. S. Read and R. G. Turner, Tracking heterodyne detection, Appl. Opt. 4, 1570 (1965). H. R. Carleton and W. T. Maloney, A balanced optical heterodyne detector, Appl. Opt. 7, 1241 (1968). H. Gerhardt, H. Welling, and A. Güttner, Measurements of the laser linewidth due to quantum phase and quantum amplitude noise above and below threshold. I, Z. Phys. 253, 113 (1972). H. Yuen and J. H. Shapiro, Optical communication with two-photon coherent states–part III: Quantum measurements realizable with photoemissive detectors, IEEE Trans. Inf. Theory 26, 78 (1980). J. H. Shapiro and S. Wagner, Phase and amplitude uncertainties in heterodyne detection, IEEE J. Quantum Electron. 20, 803 (1984). J. Shapiro, Quantum noise and excess noise in optical homodyne and heterodyne receivers, IEEE J. Quantum Electron. 21, 237 (1985). N. G. Walker and J. E. Carroll, Multiport homodyne detection near the quantum noise limit, Opt. Quantum Electron. 18, 355 (1986). M. J. Collett, R. Loudon, and C. W. Gardiner, Quantum theory of optical homodyne and heterodyne detection, J. Mod. Opt. 34, 881 (1987). Y. Lai and H. A. Haus, Characteristic functions and quantum measurements of optical observables, Quantum Opt. 1, 99 (1989). G. M. D’Ariano, Homodyning as universal detection, in Quantum Communication, Computing, and Measurement, edited by O. Hirota, A. S. Holevo, and C. M. Caves (Springer US, Boston, MA, 1997), pp. 253–264. C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, Linear Optical Sampling, IEEE Photonics Technol. Lett. 15, 1746 (2003). S. Stenholm, Simultaneous measurement of conjugate variables, Ann. Phys. (N.Y.) 218, 233 (1992). E. Arthurs and J. L. Kelly, On the simultaneous measurement of a pair of conjugate observables, Bell Syst. Tech. J. 44, 725 (1965). C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum information, Rev. Mod. Phys. 84, 621 (2012). J. Řeháček, Y. S. Teo, Z. Hradil, and S. Wallentowitz, Surmounting intrinsic quantum-measurement uncertainties in Gaussian-state tomography with quadrature squeezing, Sci. Rep. 5, 12289 (2015). S. Lorenz, N. Korolkova, and G. Leuchs, Continuous-variable quantum key distribution using polarization encoding and post selection, Appl. Phys. B 79, 273 (2004). A. M. Lance, T. Symul, V. Sharma, C. Weedbrook, T. C. Ralph, and P. K. Lam, No-Switching Quantum Key Distribution Using Broadband Modulated Coherent Light, Phys. Rev. Lett. 95, 180503 (2005). V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, The security of practical quantum key distribution, Rev. Mod. Phys. 81, 1301 (2009). D. R. Cox, Principles of Statistical Inference (Cambridge University Press, Cambridge, England, 2006). J. Heersink, V. Josse, G. Leuchs, and U. L. Andersen, Efficient polarization squeezing in optical fibers, Opt. Lett. 30, 1192 (2005). P. Grangier, R. E. Slusher, B. Yurke, and A. LaPorta, Squeezed-Light–Enhanced Polarization Interferometer, Phys. Rev. Lett. 59, 2153 (1987). V. Josse, A. Dantan, A. Bramati, and E. Giacobino, Entanglement and squeezing in a two-mode system: theory and experiment, J. Opt. B 6, S532 (2004). Ch. Marquardt, J. Heersink, R. Dong, M. V. Chekhova, A. B. Klimov, L. L. Sánchez-Soto, U. L. Andersen, and G. Leuchs, Quantum Reconstruction of an Intense Polarization Squeezed Optical State, Phys. Rev. Lett. 99, 220401 (2007). C. R. Müller, B. Stoklasa, C. Peuntinger, C. Gabriel, J. Řeháček, Z. Hradil, A. B. Klimov, G. Leuchs, Ch. Marquardt, and L. L. Sánchez-Soto, Quantum polarization tomography of bright squeezed light, New J. Phys. 14, 085002 (2012). C. Peuntinger, B. Heim, C. R. Müller, C. Gabriel, Ch. Marquardt, and G. Leuchs, Distribution of Squeezed States Through an Atmospheric Channel, Phys. Rev. Lett. 113, 060502 (2014). R. M. Shelby, M. D. Levenson, and P. W. Bayer, Guided acoustic-wave Brillouin scattering, Phys. Rev. B 31, 5244 (1985). R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, Broad-band Parametric Deamplification of Quantum Noise in an Optical Fiber, Phys. Rev. Lett. 57, 691 (1986). D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz, Ch. Marquardt, and G. Leuchs, Reduction of Guided Acoustic Wave Brillouin Scattering in Photonic Crystal Fibers, Phys. Rev. Lett. 97, 133901 (2006). J. Řeháček, S. Olivares, D. Mogilevtsev, Z. Hradil, M. G. A. Paris, S. Fornaro, V. D’Auria, A. Porzio, and S. Solimeno, Effective method to estimate multidimensional Gaussian states, Phys. Rev. A 79, 032111 (2009). G. M. D’Ariano, C. Macchiavello, and N. Sterpi, Systematic and statistical errors in homodyne measurements of the density matrix, Quantum Semiclass. Opt. 9, 929 (1997). H. Zhu, Quantum state estimation with informationally overcomplete measurements, Phys. Rev. A 90, 012115 (2014). H. C. Thode, Testing for Normality (Marcel Dekker, New York, 2002).
dspace.entity.typePublication
relation.isAuthorOfPublication88b797ff-cbd7-4498-a9c7-4e39f4fa4776
relation.isAuthorOfPublication.latestForDiscovery88b797ff-cbd7-4498-a9c7-4e39f4fa4776

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SánchezSotoLL 09 LIBRE.pdf
Size:
542.08 KB
Format:
Adobe Portable Document Format

Collections