Blending through-space and through-bond π–π-coupling in [2,2′]-paracyclophane-oligophenylenevinylene molecular wires
Loading...
Download
Official URL
Full text at PDC
Publication date
2013
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Journal of the American Chemical Society
Citation
Abstract
A series of ZnP-pCp-oPPV-C60 conjugates covalently connected through [2,2′]-paracyclophane-oligophenylenevinylene (pCp-oPPV) bridges containing one, two, and three [2,2′]-paracyclophanes (pCps) has been prepared in multistep synthetic procedures involving Horner-Wadsworth-Emmons olefination reactions and/or Heck type Pd-catalyzed reactions. Molecular modeling suggests that charge transfer is effectively mediated by the pCp-oPPVs through a predominant hole-transfer mechanism. Photophysical investigation supports molecular modeling and reveals two major trends. On one hand, C 60 excitation of 1, 2, and 3 leads exclusively to charge transfer between pCp and C60 to afford a ZnP-(pCp-oPPV)•+- C60•- radical ion pair state without giving rise to a subsequent charge shift to yield the ZnP•+-pCp-oPPV-C 60•- radical ion pair state. On the other hand, ZnP excitation of 1, 2, and 3 results in a rather slow charge transfer between ZnP and C60, after which the ZnP•+-pCp-oPPV-C 60•- radical ion pair state evolves. In temperature-dependent ZnP fluorescence experiments, which were performed in the temperature range from 273 to 338 K, two domains are discernible: low and high temperature behaviors. In the low temperature range (i.e., below 30 C) the rate constants do not change, suggesting that a superexchange mechanism is the modus operandi. In the high temperature range (i.e., >30 C) the rate constants increase. Moreover, we find rather strong distance dependence for 1 and 2 and weak distance dependence for 2 and 3. A damping factor of 0.145 Å-1 is derived for the former pair and 0.012 Å-1 for the latter.