Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Vacuum energy as dark matter

dc.contributor.authorAlbareti, F. D.
dc.contributor.authorRuiz Cembranos, José Alberto
dc.contributor.authorLópez Maroto, Antonio
dc.date.accessioned2023-06-19T13:30:57Z
dc.date.available2023-06-19T13:30:57Z
dc.date.issued2014
dc.description© 2014 American Physical Society. This work has been supported by MICINN (Spain) Projects No. FIS2011-23000, No. FPA2011-27853-01 and Consolider-Ingenio MULTIDARK No. CSD2009- 00064. F. D. A. acknowledges financial support from the UAM+CSIC Campus of International Excellence (Spain) and the kind hospitality of the Instituto de Astrofísica de Canarias (IAC) while writing the manuscript.
dc.description.abstractWe consider the vacuum energy of massive quantum fields in an expanding universe. We define a conserved renormalized energy-momentum tensor by means of a comoving cutoff regularization. Using exact solutions for de Sitter space-time, we show that in a certain range of mass and renormalization scales there is a contribution to the vacuum energy density that scales as nonrelativistic matter and that such a contribution becomes dominant at late times. By means of the WKB approximation, we find that these results can be extended to arbitrary Robertson-Walker geometries. We study the range of parameters in which the vacuum energy density would be compatible with current limits on dark matter abundance. Finally, by calculating the vacuum energy in a perturbed Robertson-Walker background, we obtain the speed of sound of density perturbations and show that the vacuum energy density contrast can grow on sub-Hubble scales as in standard cold dark matter scenarios.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMICINN (Spain)
dc.description.sponsorshipConsolider-Ingenio MULTIDARK
dc.description.sponsorshipCSD2009- 00064
dc.description.sponsorshipUAM+CSIC Campus of International Excellence (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29252
dc.identifier.doi10.1103/PhysRevD.90.123509
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.90.123509
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33913
dc.issue.number12
dc.journal.titlePhysical review D
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDFIS2011-23000
dc.relation.projectIDFPA2011-27853-01
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleVacuum energy as dark matter
dc.typejournal article
dc.volume.number90
dcterms.references[1] A. G. Riess et al. (Supernova Search Team Collaboration), Astron. J. 116, 1009 (1998); S. Perlmutter et al. (Supernova Cosmology Project Collaboration), Astrophys. J. 517, 565 (1999); J. L. Tonry et al. (Supernova Search Team Collaboration), Astrophys. J. 594, 1 (2003). [2] P. A. R. Ade et al. (Planck Collaboration), Astron. Astrophys. 571, A16 (2014); N. Jarosik et al., Astrophys. J. Suppl. Ser. 192, 14 (2011); E. Komatsu et al. (WMAP Collaboration), Astrophys. J. Suppl. Ser. 192, 18 (2011). [3] D. J. Eisenstein and W. Hu, Astrophys. J. 496, 605 (1998); H.-J. Seo and D. J. Eisenstein, Astrophys. J. 598, 720 (2003); D. J. Eisenstein et al. (SDSS Collaboration), Astrophys. J. 633, 560 (2005); W. J. Percival, S. Cole, D. J. Eisenstein, R. C. Nichol, J. A. Peacock, A. C. Pope, and A. S. Szalay, Mon. Not. R. Astron. Soc. 381, 1053 (2007); W. J. Percival et al. (SDSS Collaboration), Mon. Not. R. Astron. Soc. 401, 2148 (2010). [4] I. L. Shapiro and J. Sola, Phys. Lett. B 475, 236 (2000). [5] I. L. Shapiro and J. Sola, J. High Energy Phys. 02 (2002) 006. [6] J. Sola, J. Phys. Conf. Ser. 453, 012015 (2013). [7] J. Martin, C.R. Phys. 13, 566 (2012). [8] D. Lovelock, J. Math. Phys. (N.Y.) 12, 498 (1971); 13, 874 (1972). [9] R. M. Wald, General Relativity (University of Chicago Press, Chicago, 1984). [10] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Spacetime (Cambridge University Press, Cambridge, UK, 1973). [11] N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, UK, 1982) [12] M. Maggiore, Phys. Rev. D 83, 063514 (2011). [13] L. Hollenstein, M. Jaccard, M. Maggiore, and E. Mitsou, Phys. Rev. D 85, 124031 (2012). [14] E. K. Akhmedov, arXiv:hep-th/0204048. [15] G. Ossola and A. Sirlin, Eur. Phys. J. C 31, 165 (2003). [16] N. Bilic, Phys. Rev. D 83, 105003 (2011). [17] N. Bilic, S. Domazet, and B. Guberina, Phys. Lett. B 707, 221 (2012). [18] L. Parker and S. A. Fulling, Phys. Rev. D 9, 341 (1974). [19] S. A. Fulling and L. Parker, Ann. Phys. (N.Y.) 87, 176 (1974). [20] S. D. H. Hsu, Phys. Lett. B 594, 13 (2004). [21] M. Li, Phys. Lett. B 603, 1 (2004). [22] A. G. Cohen, D. B. Kaplan, and A. E. Nelson, Phys. Rev. Lett. 82, 4971 (1999). [23] G. Abreu and M. Visser, Phys. Rev. Lett. 105, 041302 (2010). [24] A. Riotto, arXiv:hep-ph/0210162. [25] V. F. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, Cambridge, UK, 2005).
dspace.entity.typePublication
relation.isAuthorOfPublicationc5a4cc87-ceba-494d-95ab-d54b9b1a35e3
relation.isAuthorOfPublicatione14691a1-d3b0-47b7-96d5-24d645534471
relation.isAuthorOfPublication.latestForDiscoveryc5a4cc87-ceba-494d-95ab-d54b9b1a35e3

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevD.90.123509.pdf
Size:
485.95 KB
Format:
Adobe Portable Document Format

Collections