Representing 3-manifolds by triangulations of S3: a constructive approach
dc.contributor.author | Hilden, Hugh Michael | |
dc.contributor.author | Montesinos Amilibia, José María | |
dc.contributor.author | Tejada Jiménez, Débora María | |
dc.contributor.author | Toro Villegas, Margarita María | |
dc.date.accessioned | 2023-06-20T10:36:36Z | |
dc.date.available | 2023-06-20T10:36:36Z | |
dc.date.issued | 2005 | |
dc.description.abstract | In a paper of I. V. Izmestʹev and M. Joswig [Adv. Geom. 3 (2003), no. 2, 191–225;], it was shown that any closed orientable 3-manifold M arises as a branched covering over S3 from some triangulation of S3. The proof of this result is based on the fact that any closed orientable 3-manifold M is a simple 3-branched covering over S3 with a knot K as branched set [H. M. Hilden, Amer. J. Math. 98 (1976), no. 4, 989–997; J. M. Montesinos, Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 105, 85–94;]. In the paper under review the authors obtain the same result in a different way, which turns out to be constructive. More precisely, a triangulation Δ of the 3-sphere S3 defines uniquely a number m≤4, a subgraph Γ of Δ and a representation ω(Δ) of π1(S3∖Γ) into the symmetric group of m indices Σm. The aim of the paper is to prove that if (K,ω) is a knot or a link K in S3 together with a transitive representation ω:π1(S3∖K)→Σm, 2≤m≤3, then there is a constructive procedure to obtain a triangulation Δ of S3 such that ω(Δ)=ω. This new method involves a new representation of knots and links, called a butterfly representation. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22347 | |
dc.identifier.issn | 0034-7426 | |
dc.identifier.officialurl | http://www.scm.org.co/index.php?option=com_wrapper&view=wrapper&Itemid=176 | |
dc.identifier.relatedurl | http://www.scm.org.co/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50760 | |
dc.issue.number | 2 | |
dc.journal.title | Revista Colombiana de Matemáticas | |
dc.language.iso | eng | |
dc.page.final | 86 | |
dc.page.initial | 63 | |
dc.publisher | Soc. Colombiana Mat. | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 515.16 | |
dc.subject.keyword | 3-manifolds | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | Representing 3-manifolds by triangulations of S3: a constructive approach | |
dc.type | journal article | |
dc.volume.number | 39 | |
dcterms.references | G. Burde & H. Zieschang, Knots, Walter de Gruyter, New York, 1985. J. Goodman and H. Onishi, Even triangulations of S3 and the coloring of graphs, Trans. Amer. Mat. Soc. 246 (1978), 501–510. H. M. Hilden, 3-fold branched coverings of S3, Amer. J. of Math. 98 no. 4 (1974), 989–997. H. M. Hilden, J. M. Montesinos, D. M. Tejada & M. M. Toro, A new representation of links. Butterflies. Preprint, 2005. H. M. Hilden, J. M. Montesinos, D. M. Tejada & M. M. Toro, Mariposas y 3-variedades. Rev.Acad. Colomb. Rev. Acad. Cienc. 28 no. 106 (2004), 71–78. I. Izmestiev & M. Joswig, Branched coverings, triangulations and 3–manifolds, Adv. Geom. 3 no. 2 (2003), 191–225. M. Joswig, Projectivities in simplicial complexes and colorings of simple polytopes, Topology 23 (1984), 195–209. R. Lickorish, An Introduction to Knot Theory,. Graduate texts in Mathematics 175, Springer-Verlag, New York, 1997. J. M. Montesinos, 3-manifolds as 3-fold branched covers of S3, Quart. J. Math. 27 no. 2 (1976), 85–94. J. M. Montesinos, Classical Tesselations and three manifolds, Universitext, Springer-Verlag, New York. 1987. J. M. Montesinos, Calidoscopios y 3–variedades, Editado por Débora M. Tejada J. y Margarita M. Toro V., Facultad de Ciencias Universidad Nacional de Colombia Sede Medellín, Bogotá. 2003. K. Murasugi, Knot Theory and its Applications. Birkhauser, Basel, 1996. H. Seifert & Threlfall, A textbook of Topology, Academic Press, New York- London, 1980. D. Tejada, Variedades, triangulaciones y representaciones, Trabajo de promoción a Titularidad, Universidad Nacional de Colombia Sede Medellín, 2003. W. Thurston, Three-Dimensional Geometry and Topology, Preprint (1990). M. M. Toro, Nudos combinatorios y mariposas, Rev. Acad. Cienc. 28 no. 106 (2004), 79–86. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 7097502e-a5b0-4b03-b547-bc67cda16ae2 | |
relation.isAuthorOfPublication.latestForDiscovery | 7097502e-a5b0-4b03-b547-bc67cda16ae2 |
Download
Original bundle
1 - 1 of 1