Pontryagin reflexive groups are not determined by their continuous characters
dc.contributor.author | Martín Peinador, Elena | |
dc.contributor.author | Chasco, M.J. | |
dc.date.accessioned | 2023-06-20T16:59:47Z | |
dc.date.available | 2023-06-20T16:59:47Z | |
dc.date.issued | 1998-09 | |
dc.description.abstract | A theorem of Glicksberg states that, for an abelian group G, two locally compact topologies with the same set of continuous characters must coincide. In [12] it is asserted that this fact also holds for two Pontryagin reflexive topologies. We prove here that this statement is not correct, and we give some additional conditions under which it is true. We provide some examples of classes of groups determined by their continuous characters. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Educación | |
dc.description.sponsorship | Xunta de Galicia | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16699 | |
dc.identifier.doi | 10.1216/rmjm/1181071826 | |
dc.identifier.issn | 0035-7596 | |
dc.identifier.officialurl | http://projecteuclid.org/euclid.rmjm/1181071826 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57592 | |
dc.issue.number | 1 | |
dc.journal.title | Rocky Mountain Journal of Mathematics | |
dc.language.iso | eng | |
dc.page.final | 160 | |
dc.page.initial | 155 | |
dc.publisher | Rocky Mountain Mathematics Consortium | |
dc.relation.projectID | PB93.0454-C0201 | |
dc.relation.projectID | 32103B95 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 515.1 | |
dc.subject.keyword | Continuous character | |
dc.subject.keyword | reflexive space | |
dc.subject.keyword | compact-open topology | |
dc.subject.keyword | Pontryagin duality | |
dc.subject.keyword | Glicksberg theorem | |
dc.subject.keyword | Montel space | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | Pontryagin reflexive groups are not determined by their continuous characters | |
dc.type | journal article | |
dc.volume.number | 28 | |
dcterms.references | W. Banaszczyk, Additive subgroups of topological vector spaces, Lecture Notes in Math. 1466 1991. W. Banaszczyk and E. Martí n-Peinador, The Glicksberg theorem on weakly compact sets for nuclear groups, Ann. N.Y. Acad. Sci. 788 (1996), 34-39. J. Diestel, Sequences and series in Banach spaces, Grad. Texts in Math. 92 1984. D.N. Dikranjan, I.R. Prodanov and L.N. Stoyanov, Topological groups, Marcel Dekker, New York, 1990. I. Glicksberg, Uniform boundedness for groups, Canad. J. Math. 14 (1962), 269-276. G. Köthe, Topological vector spaces I, Springer Verlag, New York, 1969. E. Martí n-Peinador, A reflexive admissible group must be locally compact, Proc. Amer. Math. Soc. 123 (1995), 3563-3566. D. Remus and F.J. Trigos, Abelian groups which satisfy Pontryagin duality need not respect compactness, Proc. Amer. Math. Soc. 117 (1993), 1195-1200. M.F. Smith, The Pontryajin duality theorem in linear spaces, Ann. of Math. 56 (1952), 248-253. V. Tarieladze, personal, communication. N.Th. Varopoulos, Studies in harmonic analysis, Proc. Camb. Phil. Soc. 60 (1964), 465-516. R. Venkataramann, Compactness in abelian topological groups, Pacific J. Math. 57 (1975), 591-595. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 0074400c-5caa-43fa-9c45-61c4b6f02093 | |
relation.isAuthorOfPublication.latestForDiscovery | 0074400c-5caa-43fa-9c45-61c4b6f02093 |
Download
Original bundle
1 - 1 of 1