Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Pontryagin reflexive groups are not determined by their continuous characters

dc.contributor.authorMartín Peinador, Elena
dc.contributor.authorChasco, M.J.
dc.date.accessioned2023-06-20T16:59:47Z
dc.date.available2023-06-20T16:59:47Z
dc.date.issued1998-09
dc.description.abstractA theorem of Glicksberg states that, for an abelian group G, two locally compact topologies with the same set of continuous characters must coincide. In [12] it is asserted that this fact also holds for two Pontryagin reflexive topologies. We prove here that this statement is not correct, and we give some additional conditions under which it is true. We provide some examples of classes of groups determined by their continuous characters.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educación
dc.description.sponsorshipXunta de Galicia
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16699
dc.identifier.doi10.1216/rmjm/1181071826
dc.identifier.issn0035-7596
dc.identifier.officialurlhttp://projecteuclid.org/euclid.rmjm/1181071826
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57592
dc.issue.number1
dc.journal.titleRocky Mountain Journal of Mathematics
dc.language.isoeng
dc.page.final160
dc.page.initial155
dc.publisherRocky Mountain Mathematics Consortium
dc.relation.projectIDPB93.0454-C0201
dc.relation.projectID32103B95
dc.rights.accessRightsopen access
dc.subject.cdu515.1
dc.subject.keywordContinuous character
dc.subject.keywordreflexive space
dc.subject.keywordcompact-open topology
dc.subject.keywordPontryagin duality
dc.subject.keywordGlicksberg theorem
dc.subject.keywordMontel space
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titlePontryagin reflexive groups are not determined by their continuous characters
dc.typejournal article
dc.volume.number28
dcterms.referencesW. Banaszczyk, Additive subgroups of topological vector spaces, Lecture Notes in Math. 1466 1991. W. Banaszczyk and E. Martí n-Peinador, The Glicksberg theorem on weakly compact sets for nuclear groups, Ann. N.Y. Acad. Sci. 788 (1996), 34-39. J. Diestel, Sequences and series in Banach spaces, Grad. Texts in Math. 92 1984. D.N. Dikranjan, I.R. Prodanov and L.N. Stoyanov, Topological groups, Marcel Dekker, New York, 1990. I. Glicksberg, Uniform boundedness for groups, Canad. J. Math. 14 (1962), 269-276. G. Köthe, Topological vector spaces I, Springer Verlag, New York, 1969. E. Martí n-Peinador, A reflexive admissible group must be locally compact, Proc. Amer. Math. Soc. 123 (1995), 3563-3566. D. Remus and F.J. Trigos, Abelian groups which satisfy Pontryagin duality need not respect compactness, Proc. Amer. Math. Soc. 117 (1993), 1195-1200. M.F. Smith, The Pontryajin duality theorem in linear spaces, Ann. of Math. 56 (1952), 248-253. V. Tarieladze, personal, communication. N.Th. Varopoulos, Studies in harmonic analysis, Proc. Camb. Phil. Soc. 60 (1964), 465-516. R. Venkataramann, Compactness in abelian topological groups, Pacific J. Math. 57 (1975), 591-595.
dspace.entity.typePublication
relation.isAuthorOfPublication0074400c-5caa-43fa-9c45-61c4b6f02093
relation.isAuthorOfPublication.latestForDiscovery0074400c-5caa-43fa-9c45-61c4b6f02093

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MPeina10.pdf
Size:
205.06 KB
Format:
Adobe Portable Document Format

Collections