Tête-à-tête twists, monodromies and representation of elements of Mapping Class Group
dc.contributor.author | A’Campo, Norbert | |
dc.contributor.author | Fernández de Bobadilla, Javier | |
dc.contributor.author | Pe Pereira, María | |
dc.contributor.author | Portilla Cuadrado, Pablo | |
dc.date.accessioned | 2024-01-31T12:40:53Z | |
dc.date.available | 2024-01-31T12:40:53Z | |
dc.date.issued | 2022-07-01 | |
dc.description.abstract | We study monodromies of plane curve singularities and pseudoperiodic homeomorphisms of oriented surfaces with boundary using tête-à-tête graphs and twists. A tête-à-tête twist is a generalisation of the classical Dehn twist. We introduce the class of mixed tête-à-tête graphs and twists, and prove that mixed tête-à-tête twists contain the monodromies of irreducible plane curve singularities. In a sequel paper, the fourth author and B. Sigurdsson have extended this to the reducible case. | en |
dc.description.abstract | Nous étudions la monodromie des singularités de courbes planes et les homéomorphisms pseudo-périodiques de surfaces orientées à bord en utilisant graphes et cisaillements tête-à-tête. Un cisaillement tête-à-tête est une généralisation du twist de Dehn classique. Nous introduisons la classes des graphes et cisaillements tête-à-tête mélangé, et démontrons que les monodromies locales de courbes planes irréductibles appartiennent à cette classe. Dans un travail ultérieur le quatrième auteur et B. Sigurdsson ont étendu ce résultat au cas des singularités réductibles. | fr |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Economía, Comercio y Empresa (España) | |
dc.description.status | pub | |
dc.identifier.citation | A’Campo, N., Fernández De Bobadilla, J., Pe Pereira, M., Portilla Cuadrado, P.: Tête-à-tête twists, monodromies and representation of elements of Mapping Class Group. Annales de l’Institut Fourier. 71, 2649-2710 (2022). https://doi.org/10.5802/aif.3459 | |
dc.identifier.doi | 10.5802/aif.3459 | |
dc.identifier.issn | 1777-5310 | |
dc.identifier.officialurl | https//doi.org/10.5802/aif.3459 | |
dc.identifier.relatedurl | https://aif.centre-mersenne.org/articles/10.5802/aif.3459/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/97145 | |
dc.issue.number | 6 | |
dc.journal.title | Annales de l'Institut Fourier | |
dc.language.iso | eng | |
dc.page.final | 2710 | |
dc.page.initial | 2649 | |
dc.publisher | Association des Annales de l'Institut Fourier | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89420-P/ES/SINGULARIDADES, ARCOS, MAPPING CLASS GROUP E INTERACCIONES/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-114750GB-C32/ES/SINGULARIDADES EN ALGEBRA, GEOMETRIA, TOPOLOGIA, CRIPTOGRAFIA Y SUS APLICACIONES/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2015-0554/ES/INSTITUTO DE CIENCIAS MATEMATICAS/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2013-45710-C2-2-P/ES/SINGULARIDADES Y SUS APLICACIONES A GEOMETRIA, TOPOLOGIA, ALGEBRA Y CRIPTOGRAFIA/ | |
dc.rights | Attribution-NoDerivatives 4.0 International | en |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ | |
dc.subject.keyword | Monodromy | |
dc.subject.keyword | Pseudo-periodic homeomorphism | |
dc.subject.keyword | Tête-à-tête graphs and twists | |
dc.subject.ucm | Álgebra | |
dc.subject.unesco | 12 Matemáticas | |
dc.title | Tête-à-tête twists, monodromies and representation of elements of Mapping Class Group | en |
dc.type | journal article | |
dc.volume.number | 71 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 599972e1-d3f0-4c81-ad90-b0bbd0b14e8b | |
relation.isAuthorOfPublication.latestForDiscovery | 599972e1-d3f0-4c81-ad90-b0bbd0b14e8b |
Download
Original bundle
1 - 1 of 1