Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

On the structure of the moduli of jets of G-structures with a linear connection

dc.contributor.authorMartínez Ontalba, Celia
dc.contributor.authorMuñoz Masqué, Jaime
dc.contributor.authorValdés Morales, Antonio
dc.date.accessioned2023-06-20T17:00:53Z
dc.date.available2023-06-20T17:00:53Z
dc.date.issued2003
dc.description.abstractThe moduli space of jets of G-structures admitting a canonical linear connection is shown to be isomorphic to the quotient by G of a natural G-module.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16808
dc.identifier.doi10.1016/S0926-2245(02)00162-6
dc.identifier.issn0926-2245
dc.identifier.officialurlhttp://www.sciencedirect.com/science/journal/09262245
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57626
dc.issue.number3
dc.journal.titleDifferential Geometry and Its Applications
dc.language.isoeng
dc.page.final283
dc.page.initial271
dc.publisherElsevier Science
dc.relation.projectIDPB98-533.
dc.rights.accessRightsrestricted access
dc.subject.cdu514.7
dc.subject.keywordCanonical linear connection
dc.subject.keywordDifferential invariant
dc.subject.keywordG-structure
dc.subject.keywordJet bundles
dc.subject.keywordModuli of G-structures
dc.subject.ucmGeometría diferencial
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleOn the structure of the moduli of jets of G-structures with a linear connection
dc.typejournal article
dc.volume.number18
dcterms.referencesV.I. Arnold, Mathematical Problems in Classical Physics, in: Trends and Perspectives in Applied Mathematics, Applied Mathematics Sciences, Vol. 100, Springer-Verlag, New York, 1994. D. Bernard, Sur la géometrie différentielle des G-structures, Ann. Inst. Fourier, Grenoble 10 (1960) 151–270. D.B.A. Epstein, Natural tensors on Riemannian manifolds, J. Differential Geom. 10 (1975) 631–645. A. Fujimoto, Theory of G-structures, Vol. 1, 1972, English edition translated from the original Japanese, Publications of the Study Group of Geometry. S. Kobayashi, Transformation Groups in Differential Geometry, Springer-Verlag, Berlin, 1972. S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Vol. I, Wiley, New York, 1963. J. Muñoz Masqué, A. Valdés, The number of functionally independent invariants of a pseudo-Riemannian metric, J. Phys. A: Math. Gen. 27 (1994) 7843–7855. R.S. Palais, Seminar on the Atiyah–Singer Index Theorem, in: Ann. Math. Studies, Vol. 57, Princeton University Press, Princeton, NJ, 1965. T.Y. Thomas, The Differential Invariants of Generalized Spaces, Cambridge University Press, London, 1934. A. Valdés, Differential invariants of R∗-structures, Math. Proc. Cambridge Philos. Soc. 119 (1996) 341–356. A.M. Verbovetskii, A.M. Vinogradov, D.M. Gessler, Scalar differential invariants and characteristic classes of homogeneous geometric structures, Math. Notes 51 (1996) 543–549. A.M. Vinogradov, Scalar differential invariants, diffieties and characteristic classes, in: M. Francaviglia (Ed.), Mechanics, Analysis and Geometry: 200 Years After Lagrange, Elsevier, Amsterdam, 1991, pp. 379–414.
dspace.entity.typePublication
relation.isAuthorOfPublicationb32a56e7-51d2-4637-9e2d-d37952f13e53
relation.isAuthorOfPublication2ee189aa-d1f1-45ca-a646-7433de5952b9
relation.isAuthorOfPublication.latestForDiscoveryb32a56e7-51d2-4637-9e2d-d37952f13e53

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ontalba01.pdf
Size:
148.74 KB
Format:
Adobe Portable Document Format

Collections