Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

Depth profile study of Ti implanted Si at very high doses

dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorGonzález Díaz, Germán
dc.contributor.authorOlea Ariza, Javier
dc.date.accessioned2023-06-20T03:40:54Z
dc.date.available2023-06-20T03:40:54Z
dc.date.issued2011-09-15
dc.description© 2011 American Institute of Physics. Authors would like to acknowledge the Nanotechnology and Surface Analysis Services of the Universidad de Vigo C.A.C.T.I. for ToF-SIMS measurements, C.A.I. de Microscopía of the Universidad Complutense de Madrid for TEM measurements and C.A.I. de Técnicas Físicas of the Universidad Complutense de Madrid for ion implantation experiments. This work was partially supported by the projects NUMANCIA-II (Grant No. S2009/ENE/1477) funded by the Comunidad de Madrid and GENESIS-FV (Grant No. CSD2006-00004) funded by the Spanish Consolider National Program.
dc.description.abstractA detailed study on the resulting impurity profile in Si samples implanted with high doses of Ti and subsequently annealed by pulsed-laser melting (PLM) is reported. Two different effects are shown to rule the impurity profile redistribution during the annealing. During the melting stage, the thickness of the implanted layer increases while the maximum peak concentration decreases (box-shaped effect). On the contrary, during the solidifying stage, the thickness of the layer decreases and the maximum peak concentration increases (snow-plow effect). Both effects are more pronounced as the energy density of the annealing increases. Moreover, as a direct consequence of the snow-plow effect, part of the impurities is expelled from the sample through the surface.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25822
dc.identifier.doi10.1063/1.3626466
dc.identifier.issn0021-8979
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.3626466
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44234
dc.issue.number6
dc.journal.titleJournal of Applied Physics
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.projectIDNUMANCIA-2-CM (S2009/ENE-1477)
dc.relation.projectIDCONSOLIDER-GENESIS-FV (CSD2006-00004)
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordEfficiency Solar-Cells
dc.subject.keywordSilicon Layers
dc.subject.keywordLaser
dc.subject.keywordRecombination
dc.subject.keywordEnhancement
dc.subject.keywordAbsorption
dc.subject.keywordInterface
dc.subject.keywordAlloys.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleDepth profile study of Ti implanted Si at very high doses
dc.typejournal article
dc.volume.number110
dcterms.references1) G. F. Brown and J. Wu, Laser Photonics Rev. 3, 394 (2009). 2) A. Luque and A. Martí, Phys. Rev. Lett. 78, 5014 (1997). 3) K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, M. A. Scarpulla, O. D. Dubon, J. W. Beeman, and P. Becla, Phys. Stat. Solidi B 241, 660 (2004). 4) K. M. Yu, W. Walukiewicz, J. W. Ager, III, D. Bour, R. Farshchi, O. D. Dubon, S. X. Li, I. D. Sharp, and E. E. Haller, Appl. Phys. Lett. 88, 092110 (2006). 5) P. Palacios, I. Aguilera, K. Sánchez, J. C. Conesa, and P. Wahnón, Phys. Rev. Lett. 101, 046403 (2008). 6) W. Wang, A. S. Lin, and J. D. Phillips, Appl. Phys. Lett. 95, 011103 (2009). 7) A. Martí, C. Tablero, E. Antolín, A. Luque, R. P. Campion, S. V. Novikov, and C. T. Foxon, Sol. Energy Mater. Sol. Cells 93, 641 (2009). 8) T. Tanaka, K. M. Yu, P. R. Stone, J. W. Beeman, O. D. Dubon, L. A. Reichertz, V. M. Kao, M. Nishio and W. Walukiewicz, J. Appl. Phys. 108, 024502 (2010). 9) I. Aguilera, P. Palacios, K. Sánchez, and P. Wahnón, Phys. Rev. B 81, 075206 (2010). 10) E. Antolín, A. Martí, C. D. Farmer, P. G. Linares, E. Hernández, A. M. Sánchez, T. Ben, S. I. Molina, C. R. Stanley, and A. Luque, J. Appl. Phys. 108, 064513 (2010). 11) I. Aguilera, P. Palacios, and P. Wahnón, Sol. Energy Mater. Sol. Cells 94, 1903 (2010). 12) T. G. Kim, J. M. Warrender, and M. J. Aziz, Appl. Phys. Lett. 88, 241902 (2006). 13) B. P. Bob, A. Kohno, S. Charnvanichaborikarn, J. M. Warrender, I. Umezu, M. Tabbal, J. S. Williams, and M. J. Aziz, J. Appl. Phys. 107, 123506 (2010). 14) E. Antolín, A. Martí , J. Olea, D. Pastor, G. González-Díaz, I. Mártil, and A. Luque, Appl. Phys. Lett. 94, 042115 (2009). 15) G. González-Díaz, J. Olea, I. Mártil, D. Pastor, A. Martí, E. Antolín, and A. Luque, Sol. Energy Mater. Sol. Cells 93, 1668 (2009). 16) J. Olea, G. González-Díaz, D. Pastor, and I. Mártil, J. Phys. D: Appl. Phys.42, 085110 (2009). 17) J. Olea, M. Toledano-Luque, D. Pastor, E. San-Andrés, I. Mártil, and G. González-Díaz, J. Appl. Phys.107, 103524 (2010). 18) J. Olea, G. González-Díaz, D. Pastor, I. Mártil, A. Martí, E. Antolín, and A. Luque, J. Appl. Phys. 109, 063718 (2011). 19) A. Martí, L. Cuadra, N. López, and A. Luque, Semiconductors 38, 946 (2004). 20) A. Luque, A. Martí, E. Antolín, and C. Tablero, Physica B 382, 320 (2006). 21) K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, Phys. Rev. B 79, 165203 (2009). 22) S. Hocine and D. Mathiot, Appl. Phys. Lett. 53, 1269 (1988). 23) D. Mathiot and D. Barbier, J. Appl. Phys. 69, 3878 (1991). 24) K. M. Yu, W. Walukiewicz, M. A. Scarpulla, O. D. Dubon, J. Wu, J. Jasinski, Z. Liliental-Weber, J. W. Beeman, M. R. Pillai, and M. J. Aziz, J. Appl. Phys. 94, 1043 (2003). 25) R. T. Young, R. F. Wood, J. Narayan, C. W. White, and W. H. Christie, IEEE Trans. Electron. Devices 27, 807 (1980). 26) C. W. White, S. R. Wilson, B. R. Appleton, and F. W. Young, Jr., J. Appl. Phys. 51, 738 (1980). 27) J. Narayan, C. W. White, M. J. Aziz, B. Stritzker, and A. Walthuis, J. Appl. Phys. 57, 564 (1985). 28) J. Olea, Á. del Prado, D. Pastor, I. Mártil and G. González-Díaz, J. Appl. Phys. 109, 113541 (2011). 29) J. Olea, D. Pastor, I. Mártil and G. González-Díaz, Mater. Res. Soc. Symp. Proc. 1210, 257 (2010). 30) B. R. Appleton, C. W. White, B. C. Larson, S. R. Wilson, and J. Narayan, IEEE Trans. Nucl. Sci. 26, 1686 (1979). 31) P. Tsouroutas, D. Tsoukalas, I. Zergioti, N. Cherkashin, and A. Claverie, J. Appl. Phys. 105, 094910 (2009). 32) C.-C. Kuo, J. Mater. Process. Technol. 209, 2978 (2009). 33) G. J. Galvin, M. O. Thompson, J. W. Mayer, R. B. Hammond, N. Paulter, and P. S. Peercy, Phys. Rev. Lett. 48, 33 (1982). 34) D. E. Hoglund, M. O. Thompson, and M. J. Aziz, Phys. Rev. B 58, 189 (1998). 35) M. O. Thompson, J. W. Mayer, A. G. Cullis, H. C. Weber, N. G. Chew, J. M. Poate and D. C. Jacobson, Phys. Rev. Lett. 50, 896 (1983).
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication12efa09d-69f7-43d4-8a66-75d05b8fe161
relation.isAuthorOfPublication.latestForDiscoverya5ab602d-705f-4080-b4eb-53772168a203

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martil,13libre.pdf
Size:
2.66 MB
Format:
Adobe Portable Document Format

Collections