Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Machine learning representation of loss of eye regularity in a Drosophila Neurodegenerative model

dc.contributor.authorDíez-Hernando, Sergio
dc.contributor.authorGanfornina, María D.
dc.contributor.authorVargas Lozano, Esteban
dc.contributor.authorSánchez, Diego
dc.date.accessioned2023-06-16T15:25:28Z
dc.date.available2023-06-16T15:25:28Z
dc.date.issued2020-06-04
dc.description.abstractThe fruit fly compound eye is a premier experimental system for modeling human neurodegenerative diseases. The disruption of the retinal geometry has been historically assessed using time-consuming and poorly reliable techniques such as histology or pseudopupil manual counting. Recent semiautomated quantification approaches rely either on manual region-of-interest delimitation or engineered features to estimate the extent of degeneration. This work presents a fully automated classification pipeline of bright-field images based on orientated gradient descriptors and machine learning techniques. An initial region-of-interest extraction is performed, applying morphological kernels and Euclidean distance-to-centroid thresholding. Image classification algorithms are trained on these regions (support vector machine, decision trees, random forest, and convolutional neural network), and their performance is evaluated on independent, unseen datasets. The combinations of oriented gradient + gaussian kernel Support Vector Machine [0.97 accuracy and 0.98 area under the curve (AUC)] and fine-tuned pre-trained convolutional neural network (0.98 accuracy and 0.99 AUC) yielded the best results overall. The proposed method provides a robust quantification framework that can be generalized to address the loss of regularity in biological patterns similar to the Drosophila eye surface and speeds up the processing of large sample batches.
dc.description.departmentDepto. de Biodiversidad, Ecología y Evolución
dc.description.facultyFac. de Ciencias Biológicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)/Fondo Europeo de Desarrollo Regional (FEDER)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/62533
dc.identifier.doi10.3389/fnins.2020.00516
dc.identifier.issn1662-4548, ESSN: 1662-453X
dc.identifier.officialurlhttps://www.frontiersin.org/articles/10.3389/fnins.2020.00516/full
dc.identifier.urihttps://hdl.handle.net/20.500.14352/6640
dc.issue.number516
dc.journal.titleFrontiers in Neuroscience
dc.language.isoeng
dc.page.final12
dc.page.initial1
dc.publisherFrontiers Media
dc.relation.projectID(BFU2011-23978 and BFU2015-68149-R)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu612.8
dc.subject.cdu51:57
dc.subject.cdu577.21
dc.subject.keywordDrosophila melanogaster
dc.subject.keywordNeurodegeneration
dc.subject.keywordRough eye
dc.subject.keywordPhenotype
dc.subject.keywordSpinocerebellar ataxia
dc.subject.keywordMachine learning
dc.subject.keywordClassification
dc.subject.keywordDeep learning
dc.subject.ucmBiología molecular (Biología)
dc.subject.ucmBiomatemáticas
dc.subject.ucmNeurociencias (Biológicas)
dc.subject.unesco2415 Biología Molecular
dc.subject.unesco2404 Biomatemáticas
dc.subject.unesco2490 Neurociencias
dc.titleMachine learning representation of loss of eye regularity in a Drosophila Neurodegenerative model
dc.typejournal article
dc.volume.number14
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Diez-Hernando, Sergio et al. 2020. Machine learning representación.....pdf
Size:
5.75 MB
Format:
Adobe Portable Document Format

Collections