Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A heuristic approach for the green vehicle routing problem with multiple technologies and partial recharges

dc.contributor.authorFelipe Ortega, Ángel
dc.contributor.authorOrtuño Sánchez, María Teresa
dc.contributor.authorRighini, Giovanni
dc.contributor.authorTirado Domínguez, Gregorio
dc.date.accessioned2023-06-19T13:27:43Z
dc.date.available2023-06-19T13:27:43Z
dc.date.issued2014
dc.description.abstractThis paper presents several heuristics for a variation of the vehicle routing problem in which the transportation fleet is composed of electric vehicles with limited autonomy in need for recharge during their duties. In addition to the routing plan, the amount of energy recharged and the technology used must also be determined. Constructive and local search heuristics are proposed, which are exploited within a non deterministic Simulated Annealing framework. Extensive computational results on varying instances are reported, evaluating the performance of the proposed algorithms and analyzing the distinctive elements of the problem (size, geographical configuration, recharge stations, autonomy, technologies, etc.).en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipGobierno de España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28233
dc.identifier.citationFelipe, Ángel, M. Teresa Ortuño, Giovanni Righini, y Gregorio Tirado. «A Heuristic Approach for the Green Vehicle Routing Problem with Multiple Technologies and Partial Recharges». Transportation Research Part E: Logistics and Transportation Review 71 (noviembre de 2014): 111-28. https://doi.org/10.1016/j.tre.2014.09.003.
dc.identifier.doi10.1016/j.tre.2014.09.003
dc.identifier.issn1366-5545
dc.identifier.officialurlhttps//doi.org/10.1016/j.tre.2014.09.003
dc.identifier.relatedurlhttp://www.sciencedirect.com/science/article/pii/S1366554514001574
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33769
dc.journal.titleTransportation Research Part E
dc.language.isoeng
dc.page.final128
dc.page.initial111
dc.publisherElsevier
dc.relation.projectIDTIN2012-32482
dc.relation.projectIDMTM2012-33740
dc.rights.accessRightsrestricted access
dc.subject.cdu519.22
dc.subject.keywordVehicle routing
dc.subject.keywordElectric vehicles
dc.subject.keywordHeuristics
dc.subject.keywordSimulated Annealing
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.unesco1209 Estadística
dc.titleA heuristic approach for the green vehicle routing problem with multiple technologies and partial rechargesen
dc.typejournal article
dc.volume.number71
dcterms.referencesAarts, E.H., Lenstra, J.K., 2003. Local Search in Combinatorial Optimization. Princeton University Press. Barco J, Guerra A, Muñoz L, Quijano N, 2013. Optimal Routing and Scheduling of Charge for Electric Vehicles: Case Study. Cavadas, J., Correia, G., Gouveia, J., 2014. Electric vehicles charging network planning. In: Computer-based Modelling and Optimization in Transportation.Springer International Publishing, pp. 85–100. Chen, T.D., Kockelman, K.M., Khan, M., 2013. Electric vehicle charging station location problem: A parking-based assignment method for Seattle. In:Transportation Research Board 92nd Annual Meeting (No. 13-1254). Conrad, R.G., Figliozzi, M.A., 2011. The recharging vehicle routing problem. In: Doolen, T., Van Aken, E.(Eds.),Proceedings of the 2011 Industrial Engineering Research Conference.Energy Lab. 2011. Sviluppare la mobilità elettrica - Tecnologie, ambiente, infrastrutture, mercato e regole. GIE edizioni, Roma. ISBN 978-88-97342-07-6. Erdogan, S., Miller-Hooks, E., 2012. A green vehicle routing problem. Transp. Res. Part E 48, 100–114. Frade, I., Ribeiro, A., Gonçalves, G., Antunes, A.P., 2011. Optimal location of charging stations for electric vehicles in a neighborhood in Lisbon, Portugal.Transp. Res. Rec.: J. Transp. Res. Board 2252 (1), 91–98. Glover, F., Laguna, M., 1997. Tabu Search. Kluwer Academic Publishers, Boston. Golden, B.L., Raghavan, S., Wasil, E.A., 2008. The Vehicle Routing Problem: Latest Advances and New Challenges.Springer. Hansen, P., Mladenovic, N., 2001. Variable neighborhood search: principles and applications. Eur. J. Oper. Res.130, 449–467. Kara, I., Kara, B., Yetis, M., 2007. Energy minimizing vehicle routing problem. Lect. Notes Comput. Sci. 4616, 62–71. Kuo, Y., 2010. Using Simulated Annealing to minimize fuel consumption for the time-dependent vehicle routing problem. Comput. Ind. Eng. 59 (1), 157–165. Küçükoolu, Y., Ene, S., Aksoy, A., Öztürk, N., 2013. A green capacitated vehicle routing problem with fuel consumption optimization model. Int. J. Comput.Eng. Res. 3 (7), 16–23. Lin, C., Choy, K.L., Ho, G.T.S., Chung, S.H., Lam, H.Y.,2014. Survey of green vehicle routing problem: past and future trends. Expert Syst. Appl. 41 (4), 1118–1138. Nie, Y.M., Ghamami, M.A., 2013. corridor-centric approach to planning electric vehicle charging infrastructure.Transp. Res. Part B: Methodol. 57, 172–190. Paschero, M., Anniballi, L., Del Vescovo, G., Fabbri, G., Mascioli, F.M.F., 2013. Design and implementation of a fast recharge station for electric vehicles. In:IEEE International Symposium on Industrial Electronics 2013: 1-6. 978-1-4673-5194-2. Pisinger, D., Ropke, S., 2007. A general heuristic for vehicle routing problems. Comput. Oper. Res. 34, 2403–2435. Preis, H., Frank, S., Nachtigall, K., 2012. Energy-optimized routing of electric vehicles in urban delivery systems. In: Operations Research Proceedings (GOR),pp. 583–588. Schneider, M., Stenger, A., Goeke, D., 2014. The Electric Vehicle Routing Problem with Time Windows and Recharging Stations. Transportation Science.Published online in Articles in Advance, 06 Mar 2014. Suman, B., Kumar, P., 2006. A survey of Simulated Annealing as a tool for single and multiobjective optimization. J. Oper. Res. Soc. 57, 1143–1160. Syslo, M.M., Deo, N., Kowalik, J.S., 1983. Discrete Optimization Algorithms with Pascal Programs. Prentice-Hall. Toth, P., Vigo, D., 2002. The vehicle routing problem. SIAM. Touati-Moungla, V., Jost, V., 2010. Combinatorial optimization for electric vehicles management. In:International Conference on Renewable Energies and Power Quality (ICREPQ11), Las Palmas de Gran Canaria (Spain). Vidal, T., Crainic, T.G., Gendreau, M., Prins, C., 2012. Heuristics for Multi-Attribute Vehicle Routing Problems: A Survey and Synthesis. Tech. Rep., CIRRELT 2012-05. Xiao, Y., Zhao, Q., Kaku, I., Xu, Y., 2012. Development of a fuel consumption optimization model for the capacitated vehicle routing problem. Comput. Oper.Res. 39 (7), 1419–1431.
dspace.entity.typePublication
relation.isAuthorOfPublication72ddce0d-fbc4-4233-800c-cbd2cc36a012
relation.isAuthorOfPublication6f9ad449-8cec-4e55-aca2-7dedcde6b101
relation.isAuthorOfPublication9a8e32e5-51d7-41cd-9e5f-781d838bce09
relation.isAuthorOfPublication.latestForDiscovery72ddce0d-fbc4-4233-800c-cbd2cc36a012

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Felipe100.pdf
Size:
692.21 KB
Format:
Adobe Portable Document Format

Collections