On the remainder of the semialgebraic Stone-Cech compactification of a semialgebraic set
dc.contributor.author | Fernando Galván, José Francisco | |
dc.contributor.author | Gamboa Mutuberria, José Manuel | |
dc.date.accessioned | 2023-06-17T22:14:03Z | |
dc.date.available | 2023-06-17T22:14:03Z | |
dc.date.issued | 2018 | |
dc.description.abstract | In this work we analyze some topological properties of the remainder partial derivative M := beta(s)*M\M of the semialgebraic Stone-Cech compactification beta(s)*M of a semialgebraic set M subset of R-m in order to 'distinguish' its points from those of M. To that end we prove that the set of points of beta(s)*M that admit a metrizable neighborhood in beta(s)*M equals M-1c boolean OR (Cl beta(s)*M((M) over bar <= 1)\(M) over bar <= 1) where M-1c is the largest locally compact dense subset of M and (M) over bar <= 1 is the closure in M of the set of 1-dimensional points of M. In addition, we analyze the properties of the sets (partial derivative) over capM and (partial derivative) over tildeM of free maximal ideals associated with formal and semialgebraic paths. We prove that both are dense subsets of the remainder partial derivative M and that the differences partial derivative M\(partial derivative) over capM and (partial derivative) over capM\(partial derivative) over tildeM are also dense subsets of partial derivative M. It holds moreover that all the points of (partial derivative) over capM have countable systems of neighborhoods in beta(s)*M. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN) | |
dc.description.sponsorship | Universidad Complutense de Madrid | |
dc.description.sponsorship | GAAR Grupos | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/45513 | |
dc.identifier.doi | 10.1016/j.jpaa.2017.02.012Get rights and content | |
dc.identifier.issn | 0022-4049 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S0022404917300373 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/18252 | |
dc.issue.number | 1 | |
dc.journal.title | Journal of Pure and Applied Algebra | |
dc.language.iso | eng | |
dc.page.final | 18 | |
dc.page.initial | 1 | |
dc.publisher | Elsevier Science B.V. (North-Holland) | |
dc.relation.projectID | MTM2014-55565-P | |
dc.relation.projectID | UCM (910444) | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 514 | |
dc.subject.cdu | 512.7 | |
dc.subject.keyword | Rings | |
dc.subject.keyword | Spaces | |
dc.subject.ucm | Geometría | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1204 Geometría | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | On the remainder of the semialgebraic Stone-Cech compactification of a semialgebraic set | |
dc.type | journal article | |
dc.volume.number | 222 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 499732d5-c130-4ea6-8541-c4ec934da408 | |
relation.isAuthorOfPublication | 8fcb811a-8d76-49a2-af34-85951d7f3fa5 | |
relation.isAuthorOfPublication.latestForDiscovery | 499732d5-c130-4ea6-8541-c4ec934da408 |
Download
Original bundle
1 - 1 of 1