Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Partition functions and the continuum limit in Penner matrix models

dc.contributor.authorÁlvarez Galindo, Gabriel
dc.contributor.authorMartínez Alonso, Luis
dc.contributor.authorMedina, helena
dc.date.accessioned2023-06-19T14:57:15Z
dc.date.available2023-06-19T14:57:15Z
dc.date.issued2014-08-08
dc.description©IOP Publishing Ltd. The financial support of the Ministerio de Ciencia e Innovación under project IS2011-22566 is gratefully acknowledged
dc.description.abstractWe present an implementation of the method of orthogonal polynomials which is particularly suitable to study the partition functions of Penner random matrix models, to obtain their explicit forms in the exactly solvable cases, and to determine the coefficients of their perturbative expansions in the continuum limit. The method relies on identities satisfied by the resolvent of the Jacobi matrix in the three-term recursion relation of the associated families of orthogonal polynomials. These identities lead to a convenient formulation of the string equations. As an application, we show that in the continuum limit the free energy of certain exactly solvable models like the linear and double Penner models can be written as a sum of Gaussian contributions plus linear terms. To illustrate the one-cut case we discuss the linear, double and cubic Penner models, and for the two- cut case we discuss theoretically and numerically the existence of a double-branch structure of the free energy for the Gaussian Penner model.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/33892
dc.identifier.doi10.1088/1751-8113/47/31/315205
dc.identifier.issn1751-8113
dc.identifier.officialurlhttp://dx.doi.org/10.1088/1751-8113/47/31/315205
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.relatedurlhttp://arxiv.org/abs/1403.6943
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34935
dc.issue.number31
dc.journal.titleJournal of physics A: Mathematical and Theoretical
dc.language.isoeng
dc.publisherIOP Publishing Ltd
dc.relation.projectIDIS2011-22566
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordModuli Space
dc.subject.keywordCombinatorics
dc.subject.keywordAsymptotics
dc.subject.keywordEquations
dc.subject.keywordBehavior
dc.subject.keywordGravity
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titlePartition functions and the continuum limit in Penner matrix models
dc.typejournal article
dc.volume.number47
dcterms.references[1] Penner R C 1988 J. Differ. Geom. 27 35 [2] Distler J and Vafa C 1991 The Penner model and d = 1 string theory Random surfaces and quantum gravity (NATO Adv. Sci. Inst. Ser. B Phys. vol 262) (New York: Plenum) [3] Distler J and Vafa C 1991 Mod. Phys. Lett. A 6 259 [4] Ambjørn J, Kristjansen C F and Makeenko Y 1994 Phys. Rev. D 50 5193 [5] Deo N 2002 Phys. Rev. E 65 056115 [6] Deo N 2003 J. Phys. A: Math. Gen. 36 3617 [7] Matsuo Y 2006 Nuc. Phys. B 740 222 [8] Chair N 2007 J. Phys. A: Math. Theor. 40 F443 [9] Dalabeeh M and Chair N 2010 J. Phys. A: Math. Theor. 43 465204 [10] Bhadola P, Garg I and Deo N 2013 Nuc. Phys. B 870 384 [11] Paniak L and Weiss N 1995 J. Math. Phys. 36 2512 [12] Makeenko Y 1994 Int. J. Mod. Phys. 10 2615 [13] Dijkgraaf R and Vafa C 2009 arXiv:0909.2453 [14] Schiappa R and Vaz R 2014 Commun. Math. Phys. 30 655 [15] Eguchi T and Maruyosi K 2010 J. High Energy Phys. 02 022 [16] Schiappa R and Wyllard N 2010 J. Math. Phys. 51 0802304 [17] Selberg A 1944 Norsk Mat. Tisdskr. 24 71. [18] Kharchev S, Marshakov A, Mironov A and Pakuliak S 1993 Nuc. Phys. B 404 717 [19] Kostov I K 1999 arXiv:hep-th/9907060 [20] Mehta M L 1991 Random Matrices (New York: Academic Press) [21] Bessis D, Itzykson C and Zuber J B 1980 Adv. in Appl. Math. 1 109 [22] Di Francesco P, Ginsparg P and Zinn-Justin J 1995 Phys. Rep. 254 1 [23] Bessis D 1979 Commun. Math. Phys. 69 147 [24] Bleher P and Its N 2005 Ann. Inst. Fourier (Grenoble) 55 1943 [25] Alvarez G, Martínez Alonso L and Medina E 2011 Nuc. Phys. B 848 398 [26] Ercolani N M, McLaughlin K D T R and Pierce V U 2008 Commun. Math. Phys. 278 31–81 [27] Ercolani N M 2011 Nonlinearity 24 481 [28] Tan C I 1992 Phys. Rev. D 45 2862 [29] Itzykson C and Zuber J B 1980 J. Math. Phys. 21 411 [30] Shirokura H 1995 Exact solution of 1-matrix model Frontiers in quantum field theory (River Edge: World Scientific) p 136 [31] Shirokura H 1996 Nuc. Phys. B 462 99–140 [32] Martínez Alonso L and Medina E 2007 J. Phys. A: Math. Theor. 40 14223 [33] Martínez Alonso L and Medina E 2008 J. Phys. A: Math. Theor. 41 335202 [34] Alvarez G, Martínez Alonso L and Medina E 2011 J. Phys. A: Math. Theor. 44 285206 [35] Gel’fand I M and Dikii L A 1975 Russ. Math. Surv. 30 77 [36] Kupershmidt B A 1985 Astérisque 123 1 [37] Jaulent M, Manna M and Martínez Alonso L 1988 Inverse Problems 4 123 [38] Deift P 1999 Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert approach (Providence: American Mathematical Society) [39] Haine L and Horozov E 1993 Bull. Sci. Math. 117 485 [40] Abramowitz M and Stegun I E 1972 Handbook of Mathematical Functions (New York: Dover) [41] Kuijlaars A B J and McLaughlin K D 2000 Commun. Pure Appl. Math. 53 736 [42] Barnes E W 1900 Quart. J. Pure Appl. Math. 31 264 [43] Olver F W J, Lozier D W, Boisvert R F and Clark C W 2010 NIST Handbook of Mathematical Functions (Cambridge University Press) [44] Harer J and Zagier D 1986 Invent. Math. 85 457 [45] Pasquetti S and Schiappa R 2010 Ann. Henri Poincaré 11 351 [46] Bonnet G, David F and Eynard B 2000 J. Phys. A: Math. Gen. 33 6739 [47] Eynard B 2009 J. High Energy Phys. 0903 003 [48] Borot G and Eynard B 2012 SIGMA 8 100 [49] Mariño M 2008 J. High Energy Phys. 12 114 [50] Alvarez G, Martínez Alonso L and Medina E 2013 J. Stat. Mech. P06006
dspace.entity.typePublication
relation.isAuthorOfPublication93e2c5ce-9576-43ad-99af-1f18cb650636
relation.isAuthorOfPublication896aafc0-9740-4609-bc38-829f249a0d2b
relation.isAuthorOfPublication.latestForDiscovery93e2c5ce-9576-43ad-99af-1f18cb650636

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
martinezalonso01preprint.pdf
Size:
497.35 KB
Format:
Adobe Portable Document Format

Collections