Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Locally determining sequences in infinite-dimensional spaces.

Loading...
Thumbnail Image

Full text at PDC

Publication date

1987

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Università del Salento
Citations
Google Scholar

Citation

Abstract

A subset L of a complex locally convex space E is said to be locally determining at 0 for holomorphic functions if for every connected open 0-neighborhood U and every f∈H(U), whenever f vanishes on U∩L, then f≡0. The authors' main result is that if E is separable and metrizable, then every set which is locally determining at 0 contains a null sequence which is also locally determining at 0. This answers a question of J. Chmielowski [Studia Math. 57 (1976), no. 2, 141–146;], who was the first to study locally determining sets. The proof of the main theorem makes use of the following result of K. F. Ng [Math. Scand. 29 (1971), 279–280;]: Let E be a normed space with closed unit ball BE. Suppose that there is a Hausdorff locally convex topology τ on E such that (BE,τ) is compact. Then E with its original norm is the dual of the normed space F={φ∈E∗: φ|BE is τ-continuous}, with norm ∥φ∥=sup{|φ(x)|: x∈BE}

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections