Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Optimal context-sensitive dynamic partial order reduction with observers

dc.conference.title28th ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA'19
dc.contributor.authorAlbert Albiol, Elvira María
dc.contributor.authorGarcía de la Banda, María
dc.contributor.authorStuckey, Peter J.
dc.contributor.authorGómez-Zamalloa Gil, Miguel
dc.contributor.authorIsabel Márquez, Miguel
dc.date.accessioned2024-01-30T15:48:12Z
dc.date.available2024-01-30T15:48:12Z
dc.date.issued2019
dc.description.abstractDynamic Partial Order Reduction (DPOR) algorithms are used in stateless model checking to avoid the exploration of equivalent execution sequences. DPOR relies on the notion of independence between execution steps to detect equivalence. Recent progress in the area has introduced more accurate ways to detect independence: Context-Sensitive DPOR considers two steps p and t independent in the current state if the states obtained by executing p ·t and t ·p are the same; Optimal DPOR with Observers makes their dependency conditional to the existence of future events that observe their operations. We introduce a new algorithm, Optimal Context-Sensitive DPOR with Observers, that combines these two notions of conditional independence, and goes beyond them by exploiting their synergies. Experimental evaluation shows that our gains increase exponentially with the size of the considered inputs.
dc.description.departmentDepto. de Sistemas Informáticos y Computación
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationElvira Albert, Maria Garcia de la Banda, Miguel Gómez-Zamalloa, Miguel Isabel, and Peter J. Stuckey. 2019. Optimal context-sensitive dynamic partial order reduction with observers. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2019). Association for Computing Machinery, New York, NY, USA, 352–362. https://doi.org/10.1145/3293882.3330565
dc.identifier.doi10.1145/3293882.3330565
dc.identifier.isbn978-1-4503-6224-5
dc.identifier.officialurlhttps://doi.org/10.1145/3293882.3330565
dc.identifier.urihttps://hdl.handle.net/20.500.14352/96664
dc.language.isoeng
dc.rights.accessRightsrestricted access
dc.subject.ucmInformática (Informática)
dc.subject.unesco1203.23 Lenguajes de Programación
dc.titleOptimal context-sensitive dynamic partial order reduction with observers
dc.typeconference paper
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublication1b41e88a-837f-414a-af5d-9105b5c0e7c5
relation.isAuthorOfPublication6eef4c69-fd36-4274-b9c2-e93105ad2268
relation.isAuthorOfPublication06ba5ba7-fae5-4f98-99b7-3830106dee88
relation.isAuthorOfPublication.latestForDiscovery6eef4c69-fd36-4274-b9c2-e93105ad2268

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Partial_order_reduction_with_observers.pdf
Size:
736.68 KB
Format:
Adobe Portable Document Format

Collections