A Variance-Expected Compliance Model for Structural Optimization

dc.contributor.authorCarrasco, Miguel
dc.contributor.authorIvorra, Benjamín Pierre Paul
dc.contributor.authorRamos Del Olmo, Ángel Manuel
dc.date.accessioned2023-06-20T03:52:35Z
dc.date.available2023-06-20T03:52:35Z
dc.date.issued2012-01
dc.description.abstractt The goal of this paper is to find robust structures for a given main load and its perturbations. In the first part, we show the mathematical formulation of an original variance-expected compliance model used for structural optimization. In the second part, we study the interest of this model on two 3D benchmark test cases and compare the obtained results with those given by an expected compliance model
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMinisterio de Educación y Ciencia (España)
dc.description.sponsorshipBanco de Santander
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.sponsorshipFONDECYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30440
dc.identifier.doi10.1007/s10957-011-9874-7
dc.identifier.issn0022-3239
dc.identifier.officialurlhttp://link.springer.com/article/10.1007/s10957-011-9874-7
dc.identifier.relatedurlhttp://link.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44600
dc.issue.number1
dc.journal.titleJournal of optimization theory and applications
dc.language.isoeng
dc.page.final151
dc.page.initial136
dc.publisherSpringer
dc.relation.projectID(S2009/PPQ-1551)
dc.relation.projectIDMTM2008-04621/MTM
dc.relation.projectIDResearch group MOMAT (Ref. 910480)
dc.relation.projectIDGrant 11090328
dc.rights.accessRightsrestricted access
dc.subject.cdu519.863
dc.subject.keywordStructural optimization · Truss modeling · Variance-expected compliance model · Stochastic programming
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco1207 Investigación Operativa
dc.titleA Variance-Expected Compliance Model for Structural Optimization
dc.typejournal article
dc.volume.number152
dcterms.references1. Dorn, W., Gomory, R., Greenberg, M.: Automatic design of optimal structures. J. Mech. 3, 25–52 (1964) 2. Ben-Tal, A., Nemirovski, A.: Robust truss topology design via semidefinite programming. SIAM J. Optim. 7(4), 991–1016 (1997) 3. Achtziger, W., Bendsøe, M., Ben-Tal, A., Zowe, J.: Equivalent displacement based formulations for maximum strength truss topology design. Impact Comput. Sci. Eng. 4(4), 315–345 (1992) 4. Achtziger, W.: Topology optimization of discrete structures: an introduction in view of computational and nonsmooth aspects. In: Rozvany, G.I.N. (ed.) Topology Optimization in Structural Mechanics, pp. 57–100. Springer, Vienna (1997) 5. Achtziger, W.: Multiple-load truss topology and sizing optimization: some properties of minimax compliance. J. Optim. Theory Appl. 98(2), 255–280 (1998) 6. Alvarez, F., Carrasco, M.: Minimization of the expected compliance as an alternative approach to multiload truss optimization. Struct. Multidiscip. Optim. 29(6), 470–476 (2005) 7. Ben-Tal, A., Bendsøe, M.P.: A new method for optimal truss topology design. SIAM J. Optim. 3(2), 322–358 (1993) 8. Ben-Tal, A., Zibulevsky, M.: Penalty/barrier multiplier methods for convex programming problems. SIAM J. Optim. 7(2), 347–366 (1997) 9. Jarre, F., Kocvara, M., Zowe, J.: Optimal truss design by interior-point methods. SIAM J. Optim. ˇ 8(4), 1084–1107 (1998) 10. Ivorra, B., Ramos, A.M., Mohammadi, B.: Semideterministic global optimization method: Application to a control problem of the burgers equation. J. Optim. Theory Appl. 135(3), 549–561 (2007) 11. Bendsøe, M.P., Sigmund, O.: Topology Optimization. Theory, Methods and Applications. Springer, Berlin (2003) 12. Eckhardt, H.: Kinematic Design of Machines and Mechanisms. McGraw-Hill, New York (1998) 13. Rockafellar, R.T.: Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1997) 14. Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2(4), 575–601 (1992) 15. Zhang, Y.: Solving large-scale linear programs by interior-point methods under the MATLAB environment. Technical Report TR96-01, Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, MD, July 1995 16. Ivorra, B., Mohammadi, B., Ramos, A.M.: Optimization strategies in credit portfolio management. J. Glob. Optim. 43(2), 415–427 (2009) 17. Seber, G.A.F.: Linear Regression Analysis. Wiley, New York (1977) 18. Kanno, Y., Ohsaki, M., Murota, K., Katoh, N.: Group symmetry in interior-point methods for semidefinite program. Optim. Eng. 2, 293–320 (2001) 19. Bai, Y., de Klerk, E., Pasechnik, D., Sotirov, R.: Exploiting group symmetry in truss topology optimization. Optim. Eng. 10(3), 331–349 (2009) 20. Ohsaki, M.: Optimization of geometrically non-linear symmetric systems with coincident critical points. Int. J. Numer. Methods Eng. 48, 1345–1357 (2000) 21. Carrasco, M.: Diseño óptimo de estructuras reticulares en elasticidad lineal vía teoría de la dualidad. Estudio teórico y numérico. Engineering Degree Thesis, Universidad de Chile (2003) 22. Debiane, L., Ivorra, B., Mohammadi, B., Nicoud, F., Ern, A., Poinsot, T., Pitsch, H.: A low-complexity global optimization algorithm for temperature and pollution control in flames with complex chemistry. Int. J. Comput. Fluid Dyn., 20(2), 93–98 (2006) 23. Isebe, D., Azerad, P., Bouchette, F., Ivorra, B., Mohammadi, B.: Shape optimization of geotextile tubes for sandy beach protection. Int. J. Numer. Methods Eng. 74(8), 1262–1277 (2008) 24. Ivorra, B., Mohammadi, B., Dumas, L., Durand, O., Redont, P.: Semi-deterministic vs. Genetic Algorithms for Global Optimization of Multichannel Optical Filters. Int. J. Comput. Eng. Sci. 2(3), 170–178 (2006) 25. Ivorra, B., Mohammadi, B., Santiago, D.E., Hertzog, J.G.: Semi-deterministic and genetic algorithms for global optimization of microfluidic protein folding devices. Int. J. Numer. Methods Eng. 66(2), 319–333 (2006) 26. Artzner, P., Delbaen, D., Eber, J.M., Heath, D.: Thinking coherently. Risk 10, 68–71 (1997) 27. Artzner, P., Delbaen, D., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999) 28. Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley, Reading (1977) 29. Carrasco, M., Ivorra, B., Lecaros, R., Ramos, A.M.: A variance-expected compliance approach for topology optimization. In: Hélder, R., Herskovits, J. (eds.) CD-ROM Proceedings of the ENGOPT 2010 Conference. Instituto Superior Técnico, Lisboa (2010)
dspace.entity.typePublication
relation.isAuthorOfPublication6d5e1204-9b8a-40f4-b149-02d32e0bbed2
relation.isAuthorOfPublication581c3cdf-f1ce-41e0-ac1e-c32b110407b1
relation.isAuthorOfPublication.latestForDiscovery6d5e1204-9b8a-40f4-b149-02d32e0bbed2

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Ivorra46.pdf
Size:
718.63 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Ivorra45.pdf
Size:
329.83 KB
Format:
Adobe Portable Document Format

Collections