Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Comparison of Algorithms to Compute Relaxation Time Maps in Magnetic Resonance Imaging

dc.contributor.authorRodríguez Ramírez De Arellano, Ignacio
dc.contributor.authorIzquierdo García, José Luis
dc.contributor.authorYazdanparast, Ehsan
dc.contributor.authorCastejón, David
dc.contributor.authorRuiz-Cabello Osuna, Jesús
dc.date.accessioned2023-06-22T11:25:13Z
dc.date.available2023-06-22T11:25:13Z
dc.date.issued2023-03-23
dc.description.abstractMagnetic resonance imaging (MRI) is a valuable diagnostic tool that provides detailed information about the structure and function of tissues in the human body. In particular, measuring relaxation times, such as T1 and T2, can provide important insights into the composition and properties of different tissues. Accurate relaxation time mapping is therefore critical for clinical diagnosis and treatment planning, as it can help to identify and characterize pathological conditions, monitor disease progression, and guide interventions. However, the computation of relaxation time maps in MRI is a complex and challenging task that requires sophisticated mathematical algorithms. Thus, there is a need for robust and accurate algorithms that can reliably extract the desired information from MRI data. This article compares the performance of the Reduced Dimension Nonlinear Least Squares (RD-NLS) algorithm versus several widely used algorithms to compute relaxation times in MRI, such as Levenberg-Marquardt and Nelder-Mead. RD-NLS simplifies the search space for the optimum fit by leveraging the partial linear relationship between signal intensity and model parameters. The comparison was performed on several datasets and signal models, resulting in T1 and T2 maps. The algorithms were evaluated based on their fit error, with the RD-NLS algorithm showing a lower error than other fit-ting algorithms. The improvement was particularly notable in T1 maps, with less of a difference in T2 maps. Additionally, the average T1 values computed with different algorithms differed by up to 14 ms, indicating the importance of algorithm selection. These results suggest that the RD-NLS algorithm outperforms other commonly used algorithms for computing relaxation times in MRI.
dc.description.departmentDepto. de Química en Ciencias Farmacéuticas
dc.description.facultyFac. de Farmacia
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipSpanish Ministry of Science and Innovation
dc.description.sponsorshipHorizon 2020
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/78754
dc.identifier.doi10.3390/app13074083
dc.identifier.issn2076-3417
dc.identifier.officialurlhttps://doi.org/10.3390/app13074083
dc.identifier.relatedurlhttps://www.mdpi.com/2076-3417/13/7/4083
dc.identifier.urihttps://hdl.handle.net/20.500.14352/72399
dc.issue.number7
dc.journal.titleApplied Sciences
dc.language.isoeng
dc.page.initial4083
dc.publisherMPDI
dc.relation.projectIDS2017/BMD-3875
dc.relation.projectIDPID2019-10656RJ-I00, PID2021-123238OB-I00 and PDC2021-121696-I00
dc.relation.projectID823854
dc.rightsAtribución 4.0 Internacional
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.cdu615.849.2
dc.subject.keywordRelaxation time
dc.subject.keywordT1 mapping
dc.subject.keywordT2 mapping
dc.subject.keywordMRI
dc.subject.keywordNonlinear fit
dc.subject.keywordRD-NLS
dc.subject.ucmDiagnóstico por imagen y medicina nuclear
dc.subject.unesco3204.01 Medicina Nuclear
dc.titleComparison of Algorithms to Compute Relaxation Time Maps in Magnetic Resonance Imaging
dc.typejournal article
dc.volume.number13
dspace.entity.typePublication
relation.isAuthorOfPublication85f8ae35-f650-415c-bd71-06c07ee772b4
relation.isAuthorOfPublication43d1cf74-cf38-4c81-834f-306e6d1c9b4e
relation.isAuthorOfPublicationde9b6685-e822-4ea8-9ff8-5841cd12adc8
relation.isAuthorOfPublication.latestForDiscovery43d1cf74-cf38-4c81-834f-306e6d1c9b4e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
applsci-13-04083.pdf
Size:
1.4 MB
Format:
Adobe Portable Document Format

Collections