Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Giant impacts and the initiation of plate tectonics on terrestrial planets

Loading...
Thumbnail Image

Full text at PDC

Publication date

2011

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science B.V.
Citations
Google Scholar

Citation

Abstract

Earth is the only terrestrial planet with present-day lithosphere recycling through plate tectonics. However, theoretical models of mantle convection based on general considerations find that all the terrestrial planets should be operating in the stagnant lid regime, in which the planets are one-plated and there is no lithosphere recycling. The stagnant lid regime is a consequence of the strong viscosity contrast across the convective layer, and therefore the upper lid (roughly equivalent to the lithosphere) must be sufficiently weakened in order to be mobilized. Here I propose that giant impacts could have provided the upper layer weakening required for surface recycling, and hence for plate tectonics, to initiate on the early Earth. Additionally, giant impacts originated lithosphere thickness and density differences, which might contribute to the initiation of subduction. Impacts are more energetic for Earth than for Mars, which could explain the likely early existence of plate tectonics on the Earth whereas Mars never had lithosphere recycling. On the other hand, convection on Mercury and the Moon might be sluggish or even inexistent, implying a reduced influence of giant impacts on their internal dynamics, whereas there is no record of the earliest geological history of Venus, which obscures any discussion on the influence of giant impacts on their internal dynamics.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections