Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Ring kinetic theory for an idealized granular gas

dc.contributor.authorVan Noije, T. P. C.
dc.contributor.authorErnst, M. H.
dc.contributor.authorBrito López, Ricardo
dc.date.accessioned2023-06-20T18:45:03Z
dc.date.available2023-06-20T18:45:03Z
dc.date.issued1998-03-01
dc.description© 1998 Elsevier Science B.V. Dedicated to J.M.J. van Leeuwen on the occasion of his 65th birthday. The authors want to thank J.A.G. Orza for performing molecular dynamics simulations, and H.J. Bussemaker and D. Montgomery for stimulating discussions. T.v.N. acknowledges support of the foundation `Fundamenteel Onderzoek der Materie (FOM)', which is financially supported by the Dutch National Science Foundation (NWO). R.B. acknowledges support from DGICYT (Spain) number PB94-0265.
dc.description.abstractThe dynamics of inelastic hard spheres is described in terms of the binary collision expansion, yielding the corresponding pseudo-liouville equation and BBGKY hierarchy for the reduced distribution functions. Based on cluster expansion techniques we derive the Boltzmann and ring kinetic equations for inelastic hard spheres. In the simple ring approximation, we calculate the structure factor S-perpendicular to(k,t) of vorticity fluctuations in a freely evolving, dilute granular gas. The kinetic theory result agrees with the result derived previously from fluctuating hydrodynamics. If the fluctuations in the flow field can be considered incompressible, S-perpendicular to(k,t) determines the spatial correlations in the flow velocities, which are of dynamic origin and exhibit long range r(-d)-behavior. The analytic results are compared with molecular dynamics simulations.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipFundamenteel Onderzoek der Materie (FOM)
dc.description.sponsorshipDutch National Science Foundation (NWO)
dc.description.sponsorshipDGICYT (España)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21535
dc.identifier.doi10.1016/S0378-4371(97)00610-9
dc.identifier.issn0378-4371
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0378437197006109
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.relatedurlhttp://arxiv.org/pdf/cond-mat/9706020v1
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58510
dc.issue.number1-Feb
dc.journal.titlePhysica A: Statistical Mechanics and its Applications
dc.language.isoeng
dc.page.final283
dc.page.initial266
dc.publisherElsevier
dc.relation.projectIDPB94-0265.
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordCircular disks
dc.subject.keywordDense gas
dc.subject.keywordFlow
dc.subject.keywordDimensions
dc.subject.keywordAutomata
dc.subject.keywordSystem
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleRing kinetic theory for an idealized granular gas
dc.typejournal article
dc.volume.number251
dcterms.references[1] E.G.D. Cohen, Physica A 194 (1993) 229. [2] S.G. Brush, Kinetic Theory, vol. 3, Pergamon Press, Oxford, 1972, p. 77. [3] J.M.J. van Leeuwen, A. Weijland, Physica 36 (1967) 457. [4] A. Weijland, J.M.J. van Leeuwen, Physica 38 (1968) 35. [5] M.H. Ernst, J.R. Dorfman, W.R. Hoegy, J.M.J. van Leeuwen, Physica 45 (1969) 127. [6] J.R. Dorfman, M.H. Ernst, J. Stat. Phys. 57 (1989) 581. [7] M.H. Ernst, E.H. Hauge, J.M.J. van Leeuwen, Phys. Rev. Lett. 25 (1970) 1254. [8] Y. Pomeau, P. Résibois, Phys. Rep. 19C 63 (1975). [9] T.R. Kirkpatrick, M.H. Ernst, Phys. Rev. A 44 (1991) 8051. [10] R. Brito, M.H. Ernst, Phys. Rev. A 46 (1992) 875. [11] H.M. Jaeger, S.R. Nagel, R.P. Behringer, Rev. Mod. Phys. 68 (1996) 1259. [12] C.K.K. Lun, S.B. Savage, D.J. Jeffrey, N. Chepurnity, J. Fluid Mech. 140 (1984) 223. [13] J.T. Jenkins, M.W. Richman, Arch. Rat. Mech. Anal. 87 (1985) 355. [14] J.T. Jenkins, M.W. Richman, Phys. Fluids 28 (1985) 3485. [15] J.T. Jenkins, M.W. Richman, J. Fluid Mech. 192 (1988) 313. [16] J.J. Brey, F. Moreno, J.W. Dufty, Phys. Rev. E 54 (1996) 445. [17] J.J. Brey, J.W. Dufty, A. Santos, J. Stat. Phys. (June) (1997). [18] A. Goldshtein, M. Shapiro, J. Fluid Mech. 282 (1995) 75. [19] N. Sela, I. Goldhirsch, S.H. Noskowicz, Phys. Fluids 8 (1996) 2337. [20] I. Goldhirsch, G. Zanetti, Phys. Rev. Lett. 70 (1993) 1619. [21] I. Goldhirsch, M-L. Tan, G. Zanetti, J. Scient. Comput. 8 (1993) 1. [22] S. McNamara, Phys. Fluids A 5 (1993) 3056. [23] S. McNamara, W.R. Young, Phys. Rev. E 50 (1994) R28 [24] S. McNamara, W.R. Young, Phys. Rev. E 53 (1996) 5089. [25] P. Deltour, J.-L. Barrat, J. Phys. I France 7 (1997) 137. [26] S.E. Esipov, T. Pöschel, J. Stat. Phys. 86 (1997) 1385. [27] J.A.G. Orza, R. Brito, T.P.C. van Noije, M.H. Ernst, Int. J. Mod. Phys. C 8 (1997) 985. [28] J.R. Dorfman, H. van Beijeren, The Kinetic Theory of Gases, in: B.J. Berne (Ed.), Statistical Mechanics, Part B: Time-Dependent Processes, Plenum Press, New York, 1977, ch. 3. [29] B.J. Alder, T.E. Wainwright, Phys. Rev. A 1 (1970) 18. [30] J.R. Dorfman, E.G.D. Cohen, Phys. Rev. Lett. 25 (1970) 1257. [31] M.H. Ernst, J.R. Dorfman, Physica 61 (1972) 157. [32] J.R. Dorfman, T.R. Kirkpatrick, J.V. Sengers, Annu. Rev. Phys. Chem. 45 (1994) 213. [33] B. Schmittmann, R.K.P. Zia, Statistical Mechanics of Driven Diffusive Systems, Academic Press, London, 1995. [34] H.J. Bussemaker, M.H. Ernst, Phys. Rev. E 53 (1996) 5837. [35] T.P.C. van Noije, M.H. Ernst, R. Brito, J.A.G. Orza, Phys. Rev. Lett. 79 (1997) 411. [36] E.G.D. Cohen, in: E.G.D. Cohen (Ed.), Fundamental Problems in Statistical Mechanics, vol. 1, North-Holland, Amsterdam, 1962, p. 110. [37] J.R. Dorfman, E.G.D. Cohen, J. Math. Phys. 8 (1967) 282. [38] T.P.C. van Noije, M.H. Ernst, R. Brito, cond-mat /9710102. [39] J.J. Brey, M.J. Ruiz-Montero, D. Cubero, Phys. Rev. E 54 (1996) 3664. [40] G.K. Batchelor, The Theory of Homogeneous Turbulence, Cambridge University Press, Cambridge, 1970, ch. 3.
dspace.entity.typePublication
relation.isAuthorOfPublicationb5d83e4b-6cf5-4cfc-9a1e-efbf55f71f87
relation.isAuthorOfPublication.latestForDiscoveryb5d83e4b-6cf5-4cfc-9a1e-efbf55f71f87

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Brito21preprint.pdf
Size:
233.03 KB
Format:
Adobe Portable Document Format

Collections