Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

Process intensification for O2 ‐dependent enzymatic transformations in continuous single‐phase pressurized flow

dc.contributor.authorBolívar Bolívar, Juan Manuel
dc.contributor.authorMannsberger, Alexander
dc.contributor.authorThomsen, Malene S.
dc.contributor.authorTekautz, Günter
dc.contributor.authorNidetzky, Bernd
dc.date.accessioned2025-01-16T12:33:35Z
dc.date.available2025-01-16T12:33:35Z
dc.date.issued2019-01-08
dc.description.abstractOxidative O2-dependent biotransformations are promising for chemical synthesis, but their development to an efficiency required in fine chemical manufacturing has proven difficult. General problem for process engineering of these systems is that thermodynamic and kinetic limitations on supplying O2 to the enzymatic reaction combine to create a complex bottleneck on conversion efficiency. We show here that continuous-flow microreactor technology offers a comprehensive solution. It does so by expanding the process window to the medium pressure range (here, ≤34 bar) and thus enables biotransformations to be conducted in a single liquid phase at boosted concentrations of the dissolved O2 (here, up to 43 mM). We take reactions of glucose oxidase and d-amino acid oxidase as exemplary cases to demonstrate that the pressurized microreactor presents a powerful engineering tool uniquely apt to overcome restrictions inherent to the individual O2-dependent transformation considered. Using soluble enzymes in liquid flow, we show reaction rate enhancement (up to six-fold) due to the effect of elevated O2 concentrations on the oxidase kinetics. When additional catalase was used to recycle dissolved O2 from the H2O2 released in the oxidase reaction, product formation was doubled compared to the O2 supplied, in the absence of transfer from a gas phase. A packed-bed reactor containing oxidase and catalase coimmobilized on porous beads was implemented to demonstrate catalyst recyclability and operational stability during continuous high-pressure conversion. Product concentrations of up to 80 mM were obtained at low residence times (1–4 min). Up to 360 reactor cycles were performed at constant product release and near-theoretical utilization of the O2 supplied. Therefore, we show that the pressurized microreactor is practical embodiment of a general reaction-engineering concept for process intensification in enzymatic conversions requiring O2 as the cosubstrate
dc.description.departmentDepto. de Ingeniería Química y de Materiales
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipFederal Ministry for Digital and Economic Affairs (bmwd), the Federal Ministry for Transport, Innovation, and Technology (bmvit), the Styrian Business Promotion Agency SFG, the Standortagentur Tirol, Government of Lower Austria and ZIT—Technology Agency of the City of Vienna through the COMET‐Funding Program managed by the Austrian Research Promotion Agency FFG.
dc.description.statuspub
dc.identifier.citationBiotechnol Bioeng . 2019 Mar;116(3):503-514. doi: 10.1002/bit.26886.
dc.identifier.doi10.1002/bit.26886
dc.identifier.issn0006-3592
dc.identifier.issn1097-0290
dc.identifier.officialurlhttps://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/bit.26886
dc.identifier.urihttps://hdl.handle.net/20.500.14352/114682
dc.issue.number3
dc.journal.titleBiotechnol Bioeng
dc.language.isoeng
dc.page.final514
dc.page.initial503
dc.publisherWiley
dc.rightsAttribution-NonCommercial 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.cdu66.0
dc.subject.keywordFlow microreactor
dc.subject.keywordHomogeneous liquid phase oxidation
dc.subject.keywordOxygen-dependent transformation
dc.subject.keywordPressurized reactor
dc.subject.keywordReaction intensification
dc.subject.ucmIngeniería química
dc.subject.ucmQuímica industrial
dc.subject.ucmBioquímica (Química)
dc.subject.unesco23 Química
dc.subject.unesco3302 Tecnología Bioquímica
dc.subject.unesco3303 Ingeniería y Tecnología Químicas
dc.titleProcess intensification for O2 ‐dependent enzymatic transformations in continuous single‐phase pressurized flow
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number116
dspace.entity.typePublication
relation.isAuthorOfPublicationdd41e7a5-3013-4b28-8263-915921ecf30a
relation.isAuthorOfPublication.latestForDiscoverydd41e7a5-3013-4b28-8263-915921ecf30a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Biotech Bioengineering - 2018 - Bolivar - Process intensification for O2‐dependent enzymatic transformations in-1.pdf
Size:
960.43 KB
Format:
Adobe Portable Document Format

Collections