Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Phase structure and asymptotic zero densities of orthogonal polynomials in the cubic model

dc.contributor.authorÁlvarez Galindo, Gabriel
dc.contributor.authorMartínez Alonso, Luis
dc.contributor.authorMedina Reus, Elena
dc.date.accessioned2023-06-18T06:45:05Z
dc.date.available2023-06-18T06:45:05Z
dc.date.issued2015-08-15
dc.description© Elsevier Science Bv. We thank Prof. A. Martínez Finkelshtein for useful conversations and for calling our attention to the work [20]. The financial support of the Ministerio de Ciencia e Innovación under project FIS2011-22566 is gratefully acknowledged.
dc.description.abstractWe apply the method we have described in a previous paper (2013) to determine the phase structure of asymptotic zero densities of the standard cubic model of non-Hermitian orthogonal polynomials. We provide a complete description of the two phases: the one cut phase and the two cut phase, and analyze the phase transition processes of the types: splitting of a cut, birth and death of a cut. (C) 2014 Elsevier B.V. All rights reserved.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovacion
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30419
dc.identifier.doi10.1016/j.cam.2014.11.054
dc.identifier.issn0377-0427
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.cam.2014.11.054
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24025
dc.journal.titleJournal of computational and applied mathematics
dc.language.isoeng
dc.page.final25
dc.page.initial10
dc.publisherElsevier Science Bv
dc.relation.projectIDFIS2011-22566
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordRiemann-hilbert approach
dc.subject.keywordValued weight function
dc.subject.keywordMatrix models
dc.subject.keywordExponential weights
dc.subject.keywordRespect
dc.subject.keywordUniversality
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titlePhase structure and asymptotic zero densities of orthogonal polynomials in the cubic model
dc.typejournal article
dc.volume.number284
dcterms.references[1] G. Alvarez, L. Martínez Alonso, E. Medina, Determination of S-curves with applications to the theory of non-hermitian orthogonal polynomials, J. Stat. Mech. Theory Exp. (2013) 06006. [2] M. Bertola, Boutroux curves with external field: equilibrium measures without a variational problem, Analysis and Math. Phys. 1 (2011) 167. [3] M. Bertola, M. Y. Mo, Commuting difference operators, spinor bundles and the asymptotics of orthogonal polynomials with respect to varying complex weights, Adv. Math. 220 (2009) 154. [4] P. Bleher, A. Its, Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model, Ann. Math. 150 (1999) 185. [5] P. Bleher, A. Its, Double scaling limit in the random matrix model: the Riemann-Hilbert approach, Commun. Pure Appl. Math. 56 (2003) 433. [6] P. M. Bleher, Lectures on random matrix models: the Riemann-Hilbert approach, in: Random Matrices, Random Processes and Integrable Sistems, CRM Ser. Math. Phys., Springer, New York, 2011, pp. 251–349. [7] F. Cachazo, K. Intriligator, C. Vafa, A large N duality via a geometric transition, Nuc. Phys. B 603 (2001) 3. [8] F. David, Phases of the large-N matrix model and non- perturbative effects in 2d gravity, Nuc. Phys. B 348 (1991) 507. [9] A. Deaño, D. Huybrechs, A. B. J. Kuijlaars, Asymptotic zero distribution of complex orthogonal polynomials associated with Gaussian quadrature, J. Approx. Theory 162 (2010) 2202. [10] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, X. Zhou, Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Commun. Pure. Appl. Math. 52 (1999) 1335. [11] R. Dijkgraaf, C. Vafa, Matrix models, topological strings, and supersymmetric gauge theories, Nuc. Phys. B 644 (2002) 3. [12] R. Dijkgraaf, C. Vafa, On geometry and matrix models, Nuc. Phys. B 644 (2002) 21. [13] A. A. Gonchar, E. A. Rakhmanov, Equilibrium measure and the distribution of zeros of extremal polynomials, Math. USSR Sbornik 125 (2) (1984) 117. [14] A. A. Gonchar, E. A. Rakhmanov, Equilibrium distributions and degree of rational approximation of analytic functions, Math. USSR Sbornik 62 (1989) 305. [15] J. J. Heckman, J. Seo, C. Vafa, Phase structure of a brane/anti-brane system at large N, J. High Energy Phys. 07 (2007) 073. [16] D. Huybrechs, A. B. J. Kuijlaars, N. Lejon, Zero distribution of complex orthogonal polynomials with respect to exponential weights, J. Approx. Theory 184 (2014) 28. [17] A. B. J. Kuijlaars, G. L. F. Silva, S-curves in polynomial external fields, J. Approx. Theory (2014) http://dx.doi.org/10.1016/j.jat.2014.04.002. [18] M. Mariño, S. Pasquetti, P. Putrov, Large N duality beyond the genus expansion, J. High Energy Phys. 10 (2010) 074. [19] A. Martínez-Finkelshtein, E. A. Rakhmanov, Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials, Commun. Math. Phys. 302 (2011) 53. [20] E. A. Rakhmanov, Orthogonal polynonials and S- curves, arXiv:1112.5713 (2011). [21] E. Saff, V. Totik, Logarithmic Potentials with External Fields, Springer, Berlin, 1997. [22] Y. Sibuya, Global Theory of a Second Order Linear Ordinary Differential Equation with a Polynomial Coefficient, North-Holland, 1975. [23] H. Stahl, Extremal domains associated with an analytic function. I., Complex Variables Theory Appl. 4 (4) (1985) 311. [24] H. Stahl, Extremal domains associated with an analytic function. II., Complex Variables Theory Appl. 4 (4) (1985) 325. [25] H. Stahl, Orthogonal polynomials with complex- valued weight function. I., Constructive Approximation 2 (1986) 225. [26] H. Stahl, Orthogonal polynomials with complex- valued weight function. II., Constructive Approximation 2 (1986) 241.
dspace.entity.typePublication
relation.isAuthorOfPublication93e2c5ce-9576-43ad-99af-1f18cb650636
relation.isAuthorOfPublication896aafc0-9740-4609-bc38-829f249a0d2b
relation.isAuthorOfPublication.latestForDiscovery93e2c5ce-9576-43ad-99af-1f18cb650636

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
alvarez12preprint.pdf
Size:
854.54 KB
Format:
Adobe Portable Document Format

Collections