Phase structure and asymptotic zero densities of orthogonal polynomials in the cubic model
dc.contributor.author | Álvarez Galindo, Gabriel | |
dc.contributor.author | Martínez Alonso, Luis | |
dc.contributor.author | Medina Reus, Elena | |
dc.date.accessioned | 2023-06-18T06:45:05Z | |
dc.date.available | 2023-06-18T06:45:05Z | |
dc.date.issued | 2015-08-15 | |
dc.description | © Elsevier Science Bv. We thank Prof. A. Martínez Finkelshtein for useful conversations and for calling our attention to the work [20]. The financial support of the Ministerio de Ciencia e Innovación under project FIS2011-22566 is gratefully acknowledged. | |
dc.description.abstract | We apply the method we have described in a previous paper (2013) to determine the phase structure of asymptotic zero densities of the standard cubic model of non-Hermitian orthogonal polynomials. We provide a complete description of the two phases: the one cut phase and the two cut phase, and analyze the phase transition processes of the types: splitting of a cut, birth and death of a cut. (C) 2014 Elsevier B.V. All rights reserved. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovacion | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/30419 | |
dc.identifier.doi | 10.1016/j.cam.2014.11.054 | |
dc.identifier.issn | 0377-0427 | |
dc.identifier.officialurl | http://dx.doi.org/10.1016/j.cam.2014.11.054 | |
dc.identifier.relatedurl | http://www.sciencedirect.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/24025 | |
dc.journal.title | Journal of computational and applied mathematics | |
dc.language.iso | eng | |
dc.page.final | 25 | |
dc.page.initial | 10 | |
dc.publisher | Elsevier Science Bv | |
dc.relation.projectID | FIS2011-22566 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Riemann-hilbert approach | |
dc.subject.keyword | Valued weight function | |
dc.subject.keyword | Matrix models | |
dc.subject.keyword | Exponential weights | |
dc.subject.keyword | Respect | |
dc.subject.keyword | Universality | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | Phase structure and asymptotic zero densities of orthogonal polynomials in the cubic model | |
dc.type | journal article | |
dc.volume.number | 284 | |
dcterms.references | [1] G. Alvarez, L. Martínez Alonso, E. Medina, Determination of S-curves with applications to the theory of non-hermitian orthogonal polynomials, J. Stat. Mech. Theory Exp. (2013) 06006. [2] M. Bertola, Boutroux curves with external field: equilibrium measures without a variational problem, Analysis and Math. Phys. 1 (2011) 167. [3] M. Bertola, M. Y. Mo, Commuting difference operators, spinor bundles and the asymptotics of orthogonal polynomials with respect to varying complex weights, Adv. Math. 220 (2009) 154. [4] P. Bleher, A. Its, Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model, Ann. Math. 150 (1999) 185. [5] P. Bleher, A. Its, Double scaling limit in the random matrix model: the Riemann-Hilbert approach, Commun. Pure Appl. Math. 56 (2003) 433. [6] P. M. Bleher, Lectures on random matrix models: the Riemann-Hilbert approach, in: Random Matrices, Random Processes and Integrable Sistems, CRM Ser. Math. Phys., Springer, New York, 2011, pp. 251–349. [7] F. Cachazo, K. Intriligator, C. Vafa, A large N duality via a geometric transition, Nuc. Phys. B 603 (2001) 3. [8] F. David, Phases of the large-N matrix model and non- perturbative effects in 2d gravity, Nuc. Phys. B 348 (1991) 507. [9] A. Deaño, D. Huybrechs, A. B. J. Kuijlaars, Asymptotic zero distribution of complex orthogonal polynomials associated with Gaussian quadrature, J. Approx. Theory 162 (2010) 2202. [10] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, X. Zhou, Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Commun. Pure. Appl. Math. 52 (1999) 1335. [11] R. Dijkgraaf, C. Vafa, Matrix models, topological strings, and supersymmetric gauge theories, Nuc. Phys. B 644 (2002) 3. [12] R. Dijkgraaf, C. Vafa, On geometry and matrix models, Nuc. Phys. B 644 (2002) 21. [13] A. A. Gonchar, E. A. Rakhmanov, Equilibrium measure and the distribution of zeros of extremal polynomials, Math. USSR Sbornik 125 (2) (1984) 117. [14] A. A. Gonchar, E. A. Rakhmanov, Equilibrium distributions and degree of rational approximation of analytic functions, Math. USSR Sbornik 62 (1989) 305. [15] J. J. Heckman, J. Seo, C. Vafa, Phase structure of a brane/anti-brane system at large N, J. High Energy Phys. 07 (2007) 073. [16] D. Huybrechs, A. B. J. Kuijlaars, N. Lejon, Zero distribution of complex orthogonal polynomials with respect to exponential weights, J. Approx. Theory 184 (2014) 28. [17] A. B. J. Kuijlaars, G. L. F. Silva, S-curves in polynomial external fields, J. Approx. Theory (2014) http://dx.doi.org/10.1016/j.jat.2014.04.002. [18] M. Mariño, S. Pasquetti, P. Putrov, Large N duality beyond the genus expansion, J. High Energy Phys. 10 (2010) 074. [19] A. Martínez-Finkelshtein, E. A. Rakhmanov, Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials, Commun. Math. Phys. 302 (2011) 53. [20] E. A. Rakhmanov, Orthogonal polynonials and S- curves, arXiv:1112.5713 (2011). [21] E. Saff, V. Totik, Logarithmic Potentials with External Fields, Springer, Berlin, 1997. [22] Y. Sibuya, Global Theory of a Second Order Linear Ordinary Differential Equation with a Polynomial Coefficient, North-Holland, 1975. [23] H. Stahl, Extremal domains associated with an analytic function. I., Complex Variables Theory Appl. 4 (4) (1985) 311. [24] H. Stahl, Extremal domains associated with an analytic function. II., Complex Variables Theory Appl. 4 (4) (1985) 325. [25] H. Stahl, Orthogonal polynomials with complex- valued weight function. I., Constructive Approximation 2 (1986) 225. [26] H. Stahl, Orthogonal polynomials with complex- valued weight function. II., Constructive Approximation 2 (1986) 241. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 93e2c5ce-9576-43ad-99af-1f18cb650636 | |
relation.isAuthorOfPublication | 896aafc0-9740-4609-bc38-829f249a0d2b | |
relation.isAuthorOfPublication.latestForDiscovery | 93e2c5ce-9576-43ad-99af-1f18cb650636 |
Download
Original bundle
1 - 1 of 1