Comparison of solutions of nonlinear evolution problems with different nonlinear terms
dc.contributor.author | Díaz Díaz, Jesús Ildefonso | |
dc.contributor.author | Benilan, Philippe | |
dc.date.accessioned | 2023-06-21T02:02:24Z | |
dc.date.available | 2023-06-21T02:02:24Z | |
dc.date.issued | 1982 | |
dc.description.abstract | The authors study the nonlinear porous media type equation ut(t,x)−Δφ(u(t,x))=0 for (t,x)∈(0,∞)×Ω, φ(u(t,x))=0 for (t,x)∈(0,∞)×∂Ω, u(0,x)=u0(x) for x∈Ω, with Ω an open set in Rn, and φ a regular, real, continuous, nondecreasing function. In the classical framework, the following theorem is proved: Let φi∈C2(R) with φi′>0 and u0i∈C(Ω¯¯¯)∩L∞(Ω), for i=1,2. Then if (i) φ1(u01)≤φ2(u02) on Ω, (ii) ψ′1≤ψ′2 on R, where ψi=φ−1i, and (iii) Δφ2(u02)≤0 on Ω, we have φ1(u1)≤φ2(u2) on (0,∞)×Ω. A counterexample shows the necessity of (iii). The theorem is proved by an application of the maximum principle. In a more abstract framework, a similar theorem is proved for the abstract Cauchy problem du/dt+Au∋f, u(0)=u0, where A operates as a multiapplication in a Banach space X, u0∈X, and f∈L1(0,T:X). The abstract result is applied to well-posed Cauchy problems in L1(Ω). Generalizations are given, including nonlinear boundary conditions and replacing the Laplacian operator Δ by a generalized (nonlinear) Laplacian. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16437 | |
dc.identifier.doi | 10.1007/BF02802726 | |
dc.identifier.issn | 0021-2172 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64676 | |
dc.issue.number | 3 | |
dc.journal.title | Israel Journal of Mathematics | |
dc.page.final | 257 | |
dc.page.initial | 241 | |
dc.publisher | Hebrew University Magnes Press | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 517.955 | |
dc.subject.keyword | nonlinear evolution problems | |
dc.subject.keyword | porous media | |
dc.subject.keyword | abstract Cauchy problems | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Comparison of solutions of nonlinear evolution problems with different nonlinear terms | |
dc.type | journal article | |
dc.volume.number | 42 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 34ef57af-1f9d-4cf3-85a8-6a4171b23557 | |
relation.isAuthorOfPublication.latestForDiscovery | 34ef57af-1f9d-4cf3-85a8-6a4171b23557 |