Caracterización geofísica de una falla cortical
Loading...
Official URL
Full text at PDC
Publication date
2025
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
La falla-dique de Messejana-Plasencia (FyDMP) es una de las principales estructuras tectónicas de la Península Ibérica, con una extensión de más de 500 km que atraviesa desde el sur de Portugal hasta Ávila. El dique actuó como eje en torno al cual se desarrolló una amplia zona de deformación, mientras que la falla sigue su trazado. En este trabajo se analiza la sección norte del sistema FyDMP mediante un perfil de sondeos magnetotelúricos (MT) de aproximadamente 75 km de longitud que atraviesa perpendicularmente el sistema y las Sierras de la Paramera, Serrota y Gredos. A partir del procesamiento e inversión de los datos MT, se obtiene una imagen 2D de las variaciones de resistividad en profundidad por primera vez en esta zona, identificándose la geometría aproximada del FyDMP. Este resultado se complementa con el uso de mapas de anomalías gravimétricas y magnéticas mediante la extracción de un perfil de longitud similar. Los resultados muestran coherencia con los valores descritos en la literatura y con la información geológica existente. Se han identificado, además, otras zonas resistivas asociadas a cuerpos con baja densidad y alta susceptibilidad magnética, así como zonas menos resistivas vinculadas a materiales más densos y con baja susceptibilidad. En este trabajo se reafirma la utilidad de integrar diferentes técnicas geofísicas para mejorar la interpretación del subsuelo y delimitar con mayor precisión estructuras geológicas complejas.
The Messejana-Plasencia fault-dyke (FyDMP) is one of the main tectonic structures of the Iberian Peninsula, with an extension of more than 500 km that crosses from southern Portugal to Ávila. The dyke acted as an axis around which a large deformation zone developed, while the fault follows its trace. In this work, the northern section of the FyDMP system is analyzed by means of a magnetotelluric (MT) sounding profile of approximately 75 km in length that crosses perpendicularly the system and the Sierras de la Paramera, Serrota and Gredos. From the processing and inversion of the MT data, a 2D image of the resistivity variations at depth is obtained for the first time in this area, identifying the approximate geometry of the FyDMP. This result is complemented with the use of gravity and magnetic anomaly maps of the area by extracting a profile of similar length. The results are consistent with the values described in the literature and with the existing geological information. In addition, other resistive zones associated with bodies with low density and high magnetic susceptibility have been identified, as well as less resistive zones linked to denser materials with low susceptibility. This work reaffirms the usefulness of integrating different geophysical techniques to improve the interpretation of the subsurface and to delineate more accurately complex geological structures.
The Messejana-Plasencia fault-dyke (FyDMP) is one of the main tectonic structures of the Iberian Peninsula, with an extension of more than 500 km that crosses from southern Portugal to Ávila. The dyke acted as an axis around which a large deformation zone developed, while the fault follows its trace. In this work, the northern section of the FyDMP system is analyzed by means of a magnetotelluric (MT) sounding profile of approximately 75 km in length that crosses perpendicularly the system and the Sierras de la Paramera, Serrota and Gredos. From the processing and inversion of the MT data, a 2D image of the resistivity variations at depth is obtained for the first time in this area, identifying the approximate geometry of the FyDMP. This result is complemented with the use of gravity and magnetic anomaly maps of the area by extracting a profile of similar length. The results are consistent with the values described in the literature and with the existing geological information. In addition, other resistive zones associated with bodies with low density and high magnetic susceptibility have been identified, as well as less resistive zones linked to denser materials with low susceptibility. This work reaffirms the usefulness of integrating different geophysical techniques to improve the interpretation of the subsurface and to delineate more accurately complex geological structures.













