Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Multifunctional pH sensitive 3D scaffolds for treatment and prevention of bone infection

dc.contributor.authorCicuéndez Maroto, Mónica
dc.contributor.authorDoadrio Villarejo, Juan Carlos
dc.contributor.authorHernández, Ana
dc.contributor.authorPortolés Pérez, María Teresa
dc.contributor.authorIzquierdo Barba, Isabel
dc.contributor.authorVallet Regí, María Dulce Nombre
dc.date.accessioned2023-06-17T22:13:57Z
dc.date.available2023-06-17T22:13:57Z
dc.date.issued2017-11-09
dc.descriptionRESEARCHER ID G-9445-2017(Juan Carlos Doadrio Villarejo)) ORCID 0000-0001-7912-5663(Juan Carlos Doadrio Villarejo) RESEARCHER ID M-9921-2014(Isabel Izquierdo Barba) ORCID 0000-0002-4139-4646 (Isabel Izquierdo Barba) RESEARCHER ID M-3378-2014 (María Vallet Regí) ORCID 0000-0002-6104-4889 (María Vallet Regí)
dc.description.abstractMultifunctional-therapeutic three-dimensional (3D) scaffolds have been prepared. These biomaterials are able to destroy the S. aureus bacterial biofilm and to allow bone regeneration at the same time. The present study is focused on the design of pH sensitive 3D hierarchical meso-macroporous 3D scaffolds based on MGHA nanocomposite formed by a mesostructured glassy network with embedded hydroxyapatite nanoparticles, whose mesopores have been loaded with levofloxacin (Levo) as antibacterial agent. These 3D platforms exhibit controlled and pH-dependent Levo release, sustained over time at physiological pH (7.4) and notably increased at infection pH (6.7 and 5.5), which is due to the different interaction rate between diverse Levo species and the silica matrix. These 3D systems are able to inhibit the S. aureus growth and to destroy the bacterial biofilm without cytotoxic effects on human osteoblasts and allowing an adequate colonization and differentiation of preosteoblastic cells on their surface. These findings suggest promising applications of these hierarchical MGHA nanocomposite 3D scaffolds for the treatment and prevention of bone infection. Statement of Significance Multifunctional 3D nanocomposite scaffolds with the ability for loading and sustained delivery of an antimicrobial agent, to eliminate and prevent bone infection and at the same time to contribute to bone regeneration process without cytotoxic effects on the surrounding tissue has been proposed. These 3D scaffolds exhibit a sustained levofloxacin delivery at physiological pH (pH 7.4), which increasing notably when pH decreases to characteristic values of bone infection process (pH 6.7 and pH 5.5). In vitro competitive assays between preosteoblastic and bacteria onto the 3D scaffold surface demonstrated an adequate osteoblast colonization in entire scaffold surface together with the ability to eliminate bacteria contamination.
dc.description.departmentDepto. de Química en Ciencias Farmacéuticas
dc.description.facultyFac. de Farmacia
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. H2020
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/45506
dc.identifier.doi10.1016/j.actbio.2017.11.009
dc.identifier.issn1742-7061
dc.identifier.officialurlhttp://www.elsevier.com
dc.identifier.relatedurlhttp://www.ucm.es/valletregigroup
dc.identifier.urihttps://hdl.handle.net/20.500.14352/18250
dc.journal.titleActa Biomaterialia
dc.language.isospa
dc.publisherElsevier
dc.relation.projectIDVERDI (694160)
dc.relation.projectIDMAT2013-43299-R
dc.relation.projectIDMAT2015-64831-R
dc.relation.projectIDMAT2016-75611-R
dc.rights.accessRightsopen access
dc.subject.cdu546
dc.subject.cdu615.46
dc.subject.keyword3D scaffolds
dc.subject.keywordBiocompatibility
dc.subject.keywordBiofilm
dc.subject.keywordCo-culture assays
dc.subject.keywordLevofloxacin
dc.subject.keywordS. aureus
dc.subject.keywordpH-dependent release
dc.subject.ucmIngeniería química
dc.subject.ucmMateriales
dc.subject.ucmQuímica inorgánica (Química)
dc.subject.unesco3303 Ingeniería y Tecnología Químicas
dc.subject.unesco3312 Tecnología de Materiales
dc.subject.unesco2303 Química Inorgánica
dc.titleMultifunctional pH sensitive 3D scaffolds for treatment and prevention of bone infection
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication94b23d40-3b2e-4dad-b72d-96c864251f14
relation.isAuthorOfPublication51038aaa-a203-431c-b241-fba997778fbb
relation.isAuthorOfPublication4b317058-0bd1-4fd8-afab-5fa79a4b7002
relation.isAuthorOfPublicationee9272a2-db11-4efb-97f8-7ce1a18ad55e
relation.isAuthorOfPublication791023b8-2531-44eb-ba01-56e3b7caa0cb
relation.isAuthorOfPublication.latestForDiscovery51038aaa-a203-431c-b241-fba997778fbb

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
pagination_ACTBIO_5162.pdf
Size:
3.65 MB
Format:
Adobe Portable Document Format

Collections