A generalization of local divergence measures
dc.contributor.author | Bertoluzza, Carlo | |
dc.contributor.author | Miranda Menéndez, Pedro | |
dc.contributor.author | Gil Álvarez, Pedro | |
dc.date.accessioned | 2023-06-20T09:41:25Z | |
dc.date.available | 2023-06-20T09:41:25Z | |
dc.date.issued | 2005-11 | |
dc.description.abstract | In this paper we propose a generalization of the concept of the local property for divergence measures. These new measures will be called g-local divergence measures, and we study some of their properties. Once this family is defined, a characterization based on Ling's theorem is given. From this result, we obtain the general form of g-local divergence measures as a function of the divergence in each element of the reference set; this study is divided in three parts according to the cardinality of the reference set: finite, infinite countable or non-countable. Finally, we study the problem of componible divergence measures as a dual concept of g-local divergence measures. | en |
dc.description.department | Depto. de Estadística e Investigación Operativa | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Dirección General de Enseñanza Superior (España) | |
dc.description.sponsorship | Fundación Banco Herrero | |
dc.description.sponsorship | INFM Section of Pavia | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17080 | |
dc.identifier.citation | Bertoluzza, C., Miranda Menéndez, P. & Gil Álvarez, P. et al. «A Generalization of Local Divergence Measures». International Journal of Approximate Reasoning, vol. 40, n.o 3, noviembre de 2005, pp. 127-46. DOI.org (Crossref), https://doi.org/10.1016/j.ijar.2004.10.008. | |
dc.identifier.doi | 10.1016/j.ijar.2004.10.008 | |
dc.identifier.issn | 0888-613X | |
dc.identifier.officialurl | https//doi.org/10.1016/j.ijar.2004.10.008 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/science/article/pii/S0888613X04001148 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50189 | |
dc.issue.number | 3 | |
dc.journal.title | International Journal of Approximate Reasoning | |
dc.language.iso | eng | |
dc.page.final | 146 | |
dc.page.initial | 127 | |
dc.publisher | Elsevier Science INC | |
dc.relation.projectID | PB97-1286 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 519.7 | |
dc.subject.keyword | Divergence measures | |
dc.subject.keyword | Local property | |
dc.subject.keyword | Ling�s theorem | |
dc.subject.keyword | Componibility | |
dc.subject.ucm | Cibernética matemática | |
dc.subject.unesco | 1207.03 Cibernética | |
dc.title | A generalization of local divergence measures | en |
dc.type | journal article | |
dc.volume.number | 40 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | d940fcaa-13c3-4bad-8198-1025a668ed71 | |
relation.isAuthorOfPublication.latestForDiscovery | d940fcaa-13c3-4bad-8198-1025a668ed71 |
Download
Original bundle
1 - 1 of 1