Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

High resolution transmission electron microscopy: A key tool to understand drug release from mesoporous matrices

dc.contributor.authorMartínez Carmona, Marina
dc.contributor.authorColilla Nieto, Montserrat
dc.contributor.authorRuiz González, María Luisa
dc.contributor.authorGonzález Calbet, José María
dc.contributor.authorVallet Regí, María Dulce Nombre
dc.date.accessioned2023-06-18T05:41:50Z
dc.date.available2023-06-18T05:41:50Z
dc.date.issued2016-05-01
dc.descriptionRESEARCHER ID M-3378-2014 (María Vallet Regí) ORCID 0000-0002-6104-4889 (María Vallet Regí)
dc.description.abstractThis work demonstrates that high resolution transmission electron microscopy (HRTEM) is an essential tool to understand drug delivery performance of mesoporous silica materials, mainly those submitted to functionalization processes involving harsh conditions that may affect the mesostructure. Herein an SBA-15-type mesoporous material bearing Si(CH2)(2)P(O)(OCH2CH3)(2) groups was synthesized following the co-condensation route. Then, the resulting material was treated with 37 wt% HCl to convert ethylphosphonate groups to ethylphosphonic acid groups. The proper dealkylation of ethoxy groups following acid treatment was confirmed by FTIR and CP-MAS H-1 -> C-13 solid state NMR, which indicated the presence of Si(CH2)(2)P(O)(OH)(2) functionalities in the treated sample. Characterization of mesoporous materials by XRD diffraction and N-2 adsorption points to well-ordered SBA-15 structures in both untreated and acid-treated samples. Nonetheless, a deep study by HRTEM reveals that the acid-treatment provokes noticeable loss of mesostructural order, only remaining small crystalline domains. This structural damage does not influence cargo loading but it severely affects the release of molecules confined into the mesopores, as concluded from in vitro delivery tests using cephalexin as model drug. Thus, whereas untreated sample showed a sustained diffusion-controlled drug release during more than 2 weeks, 100% of the loaded drug was released only after 10 h from treated sample. This abrupt burst effect cannot be explained on the basis of the existing matrix-drug interactions, whose nature and extension is quite similar under the release conditions for both samples. Thus, it can be only understood on the basis of the mesostructural damage revealed by HRTEM studies. (C) 2016 Elsevier Inc. All rights reserved.
dc.description.departmentDepto. de Química en Ciencias Farmacéuticas
dc.description.facultyFac. de Farmacia
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economia y Competitividad (MINECO)
dc.description.sponsorshipAgening Network of Excellence
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/40833
dc.identifier.doi10.1016/j.micromeso.2016.01.019
dc.identifier.issn1387-1811
dc.identifier.officialurlhttps://www.elsevier.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/23076
dc.journal.titleMicroporous and Mesoporous Materials
dc.language.isospa
dc.page.final410
dc.page.initial399
dc.publisherElsevier
dc.relation.projectIDMAT2012-35556
dc.relation.projectIDCSO2010-11384-E
dc.rights.accessRightsopen access
dc.subject.cdu546
dc.subject.cdu615.46
dc.subject.cdu66
dc.subject.keywordSilica-based mesoporous materials
dc.subject.keywordFunctionalization
dc.subject.keywordMesostructural order
dc.subject.keywordHigh resolution transmission electron microscopy
dc.subject.keywordDrug delivery
dc.subject.ucmMateriales
dc.subject.ucmQuímica inorgánica (Química)
dc.subject.unesco3312 Tecnología de Materiales
dc.subject.unesco2303 Química Inorgánica
dc.titleHigh resolution transmission electron microscopy: A key tool to understand drug release from mesoporous matrices
dc.typejournal article
dc.volume.number225
dcterms.references1] M. Vallet-Regí, A. R�amila, R.P. del Real, J. P�erez-Pariente, Chem. Mater 13 (2001) 308e311. [2] M. Vallet-Regí, F. Balas, D. Arcos, Angew. Chem. Int. Ed. 46 (2007) 7548e7558. [3] P. Yang, S. Gai, J. Lin, Chem. Soc. Rev. 41 (2012) 3679e3698. [4] S. Wang, Microporous Mesoporous Mater 117 (2009) 1e9. [5] C.G. Trejo, D. Lozano, M. Manzano, J.C. Doadrio, A.J. Salinas, S. Dapía, E. G�omez- Barrena, M. Vallet-Regí, N. García-Honduvilla, J. Buj�an, P. Esbrit, Biomaterials 31 (2010) 8564e8573. [6] J. Lu, M. Liong, Z. Li, J.I. Zink, F. Tamanoi, Small 6 (2010) 1794e1805. [7] F. Tang, L. Li, D. Chen, Adv. Mater. 24 (2012) 1504e1534. [8] M. Vallet-Regí, M. Colilla, B. Gonz�alez, Chem. Soc. Rev. 40 (2011) 596e607. [9] H. Yamada, C. Urata, Y. Aoyama, S. Osada, Y. Yamauchi, K. Kuroda, Chem. Mater. 24 (2012) 1462e1471. [10] T. Asefa, Z. Tao, Chem. Res. Toxicol. 25 (2012) 2265e2284. [11] M. Vallet-Regí, M. Manzano, M. Colilla, Biomedical Applications of Mesoporous Ceramics: Drug Delivery, Smart Materials and Bone Tissue Engineering, CRC Press, Taylor & Francis Group, LLC, Boca Raton, 2013. [12] S. Mura, J. Nicolas, P. Couvreur, Nat. Mater 12 (2013) 991e1003. [13] A. Baeza, M. Colilla, M. Vallet-Regí, Expert Opin. Drug Deliv. 12 (2015) 319e337. [14] M. Martínez-Carmona, A. Baeza, M.A. Rodríguez-Milla, J. García-Castro, M. Vallet-Regí, J. Mater. Chem. B 3 (2015) 5746. [15] J. K€argera, R. Valiullin, Chem. Soc. Rev. 42 (2013) 4172e4197. [16] F. Qu, G. Zhu, S. Huang, S. Li, J. Sun, D. Zhang, S. Qiu, Microporous Mesoporous Mater 92 (2006) 1e9. [17] Isabel Izquierdo-Barba, �Africa Martinez, Antonio L. Doadrio, Joaquin P�erez- Pariente, María Vallet-Regí, Eur. J. Pharm. Sci. 26 (2005) 365e373. [18] Jenny Andersson, Jessica Rosenholm, Sami Areva, Mika Lind�en, Chem. Mater. 16 (2004) 4160e4167. [19] A. Nieto, F. Balas, M. Colilla, M. Manzano, M. Vallet-Regí, Microporous Mesoporous Mater. 116 (2008) 4e13. [20] F. Balas, M. Manzano, P. Horcajada, M. Vallet-Regí, J. Am. Chem. Soc. 128 (2006) 8116e8117. [21] F. Hoffmann, M. Cornelius, J. Morell, M. Fr€oba, Angew. Chem. Int. Ed. 45 (2006) 3216e3251. [22] S.-W. Song, K. Hidajat, S. Kawi, Langmuir 21 (2005) 9568e9575. [23] A. Nieto, M. Colilla, F. Balas, M. Vallet-Regí, Langmuir 26 (2010) 5038e5049. [24] S. El Mourabit, M. Guillot, G. Toquer, J. Cambedouzou, F. Goettmann, A. Grandjean, RSC Adv. 2 (2012) 10916e10924. [25] C.-M. Yang, B. Zibrowius, F. Schüth, Chem. Commun. (2003) 1772e1773. [26] J.M. Rosenholm, M. Lind�en, J. Control. Release 128 (2008) 157e164. [27] R.J.P. Corriu, L. Datas, Y. Guari, A. Mehdi, C. Rey�e, C. Thieuleux, Chem. Commun. (2001) 763e764. [28] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chemelka, G.D. Stucky, Science 279 (1998) 548e552. [29] M. Colilla, M. Martínez-Carmona, S. S�anchez-Salcedo, L. Ruiz-Gonz�alez, J.M. Gonz�alez-Calbet, M. Vallet-Regí, J. Mater Chem. B 2 (2014) 5639e5651. [30] S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60 (1938) 309e319. [31] S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area, and Porosity, Academic Press, London, New York, 1982. [32] E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73 (1951) 373e380. [33] M. Kruk, M. Jaroniec, A. Sayari, Chem. Mater. 11 (1999) 492e500. [34] B.H. Wouters, T. Chen, M. Dewilde, P.J. Grobet, Microporous Mesoporous Mater. 44e45 (2001) 453e457. [35] C.J. Brinker, SoleGel Science: The Physics and Chemistry of SoleGel Processing, Academic Press, Boston, 1990. [36] O.A. Dudarko, I.V. Mel’nik, Y.L. Zub, A.A. Chuiko, A. Dabrowski, Inorg. Mater. 42 (2006) 360e367. [37] A. Aliev, D.L. Ou, B. Ormsby, A.C. Sullivan, J. Mater. Chem. 10 (2000) 2758e2764. [38] Y.-C. Pan, H.-H.G. Tsai, J.-C. Jian, C.-C. Kao, T.-L. Sung, P.-J. Chiuy, D. Saikia, J.- H. Chang, H.-M. Kao, J. Phys. Chem. C 116 (2012) 1658e1669. [39] Q. Yang, J. Yang, J. Liu, Y. Li, C. Li, Chem. Mater 17 (2005) 3019e3024. [40] M.S. Legnoverde, I. Jim�enez-Morales, A. Jim�enez-Morales, E. Rodríguez- Castell�on, E.I. Basaldella, Med. Chem. 9 (2013) 672e680. [41] J.M. Rosenholm, T. Czuryszkiewicz, F. Kleitz, J.B. Rosenholm, M. Lind�en, Langmuir 23 (2007) 4315e4323. [42] A.J. Kresge, Y.C. Tang, J. Org. Chem. 42 (1977) 757e759. [43] L. Zeng, L. An, X. Wu, J. Drug Deliv. (2011). Article ID370308, 15 pages. [44] M. Ye, S. Kim, K. Park, J. Control. Release 146 (2010) 241e260. [45] T. Kjellman, X. Xia, V. Alfredsson, A.E. García-Bennett, J. Mater. Chem. B 2 (2014) 5265e5271. [46] O. Terasaki, T. Ohsuna, Z. Liu, Y. Sakamoto, A.E. García-Bennet, Structural study of meso-porous materials by electron microscopy, in: Osamu Terasaki (Ed.), Studies in Surface Science and Catalysis, vol. 148, Elsevier, 2004, pp. 261e288. [47] Q. He, J. Shi, M. Zhu, Y. Chen, F. Chen, Microporous Mesoporous Mater (2010) 314e320. [48] I. Izquierdo-Barba, M. Colilla, M. Manzano, Microporous Mesoporous Mater 132 (2010) 442e452. [49] N. Hao, H. Liu, L. Li, D. Chen, L. Li, F. Tang, J. Nanosci. Nanotechnol. 12 (2012) 6346e6354.
dspace.entity.typePublication
relation.isAuthorOfPublication449a114d-e3bf-4d4c-81c5-2b0c5f050b9d
relation.isAuthorOfPublication0875dcf5-761f-4cbe-a35a-109b3a59efda
relation.isAuthorOfPublication46a55ceb-7c67-4916-acc8-f9b9c7a5bd38
relation.isAuthorOfPublication791023b8-2531-44eb-ba01-56e3b7caa0cb
relation.isAuthorOfPublication.latestForDiscovery791023b8-2531-44eb-ba01-56e3b7caa0cb

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
647 Micropor. Mesopor. Mat. 225, 399-410 (2016). MONTSE.pdf
Size:
10.03 MB
Format:
Adobe Portable Document Format

Collections