Collision orbits in the presence of perturbations.

dc.contributor.authorDíaz-Cano Ocaña, Antonio
dc.contributor.authorGonzalez Gascón, F.
dc.date.accessioned2023-06-20T09:33:03Z
dc.date.available2023-06-20T09:33:03Z
dc.date.issued2006
dc.description.abstractIt is shown that for particles moving in a plane under the action of attracting central potentials and a perturbing force (potential but not central),orbits representing the falling down of the particle to the center of force exist.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15014
dc.identifier.doi10.1016/j.physleta.2006.05.027
dc.identifier.issn0375-9601
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0375960106007171
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49878
dc.issue.number3
dc.journal.titlePhysics Letters A
dc.language.isoeng
dc.page.final202
dc.page.initial199
dc.publisherElsevier
dc.rights.accessRightsrestricted access
dc.subject.cdu530.1
dc.subject.keywordCollision orbits
dc.subject.keywordPerturbation of central potentials
dc.subject.ucmFísica matemática
dc.titleCollision orbits in the presence of perturbations.
dc.typejournal article
dc.volume.number358
dcterms.references[1] L. Meirovitch, Methods of Analytical Dynamics, Dover Publications, New York, 2003; V.I. Arnold, Mathematical Methods of Classical Mechanics, in: Graduate Texts in Mathematics, vol. 60, Springer-Verlag, New York, 1978. [2] E. Serra, S. Terracini, Nonlinear Anal. 22 (1994) 45; V. Coti Zelati, E. Serra, Ann. Mat. Pura Appl. 166 (1994) 343. [3] A. Ambrosetti, V. Coti Zelati, Math. Z. 201 (1989) 227; V. Coti Zelati, Nonlinear Anal. 12 (1988) 209. [4] Z. Makó, F. Szenkovits, Celestial Mech. Dynam. Astronom. 90 (2004) 51. [5] F. Diacu, E. Pérez-Chavela, M. Santoprete, J. Math. Phys. 46 (2005) 072701. [6] S. Axler, P. Bourdon,W. Ramey, Harmonic Function Theory, in: Graduate Texts in Mathematics, vol. 137, Springer-Verlag, New York, 2001. [7] R.J. Walker, Algebraic Curves, Springer-Verlag, New York, 1978. [8] S.S. Abhyankar, Algebraic Geometry for Scientists and Engineers, in: Mathematical Surveys and Monographs, vol. 35, American Mathematical Society, Providence, 1990; D. Eisenbud, Commutative Algebra with a View Towards Algebraic Geometry, in: Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1999.
dspace.entity.typePublication
relation.isAuthorOfPublication134ad262-ecde-4097-bca7-ddaead91ce52
relation.isAuthorOfPublication.latestForDiscovery134ad262-ecde-4097-bca7-ddaead91ce52

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
06.pdf
Size:
124.85 KB
Format:
Adobe Portable Document Format

Collections