Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Collision orbits in the presence of perturbations.

dc.contributor.authorDíaz-Cano Ocaña, Antonio
dc.contributor.authorGonzalez Gascón, F.
dc.date.accessioned2023-06-20T09:33:03Z
dc.date.available2023-06-20T09:33:03Z
dc.date.issued2006
dc.description.abstractIt is shown that for particles moving in a plane under the action of attracting central potentials and a perturbing force (potential but not central),orbits representing the falling down of the particle to the center of force exist.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15014
dc.identifier.doi10.1016/j.physleta.2006.05.027
dc.identifier.issn0375-9601
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0375960106007171
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49878
dc.issue.number3
dc.journal.titlePhysics Letters A
dc.language.isoeng
dc.page.final202
dc.page.initial199
dc.publisherElsevier
dc.rights.accessRightsrestricted access
dc.subject.cdu530.1
dc.subject.keywordCollision orbits
dc.subject.keywordPerturbation of central potentials
dc.subject.ucmFísica matemática
dc.titleCollision orbits in the presence of perturbations.
dc.typejournal article
dc.volume.number358
dcterms.references[1] L. Meirovitch, Methods of Analytical Dynamics, Dover Publications, New York, 2003; V.I. Arnold, Mathematical Methods of Classical Mechanics, in: Graduate Texts in Mathematics, vol. 60, Springer-Verlag, New York, 1978. [2] E. Serra, S. Terracini, Nonlinear Anal. 22 (1994) 45; V. Coti Zelati, E. Serra, Ann. Mat. Pura Appl. 166 (1994) 343. [3] A. Ambrosetti, V. Coti Zelati, Math. Z. 201 (1989) 227; V. Coti Zelati, Nonlinear Anal. 12 (1988) 209. [4] Z. Makó, F. Szenkovits, Celestial Mech. Dynam. Astronom. 90 (2004) 51. [5] F. Diacu, E. Pérez-Chavela, M. Santoprete, J. Math. Phys. 46 (2005) 072701. [6] S. Axler, P. Bourdon,W. Ramey, Harmonic Function Theory, in: Graduate Texts in Mathematics, vol. 137, Springer-Verlag, New York, 2001. [7] R.J. Walker, Algebraic Curves, Springer-Verlag, New York, 1978. [8] S.S. Abhyankar, Algebraic Geometry for Scientists and Engineers, in: Mathematical Surveys and Monographs, vol. 35, American Mathematical Society, Providence, 1990; D. Eisenbud, Commutative Algebra with a View Towards Algebraic Geometry, in: Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1999.
dspace.entity.typePublication
relation.isAuthorOfPublication134ad262-ecde-4097-bca7-ddaead91ce52
relation.isAuthorOfPublication.latestForDiscovery134ad262-ecde-4097-bca7-ddaead91ce52

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
06.pdf
Size:
124.85 KB
Format:
Adobe Portable Document Format

Collections