Collision orbits in the presence of perturbations.
dc.contributor.author | Díaz-Cano Ocaña, Antonio | |
dc.contributor.author | Gonzalez Gascón, F. | |
dc.date.accessioned | 2023-06-20T09:33:03Z | |
dc.date.available | 2023-06-20T09:33:03Z | |
dc.date.issued | 2006 | |
dc.description.abstract | It is shown that for particles moving in a plane under the action of attracting central potentials and a perturbing force (potential but not central),orbits representing the falling down of the particle to the center of force exist. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15014 | |
dc.identifier.doi | 10.1016/j.physleta.2006.05.027 | |
dc.identifier.issn | 0375-9601 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S0375960106007171 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/49878 | |
dc.issue.number | 3 | |
dc.journal.title | Physics Letters A | |
dc.language.iso | eng | |
dc.page.final | 202 | |
dc.page.initial | 199 | |
dc.publisher | Elsevier | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 530.1 | |
dc.subject.keyword | Collision orbits | |
dc.subject.keyword | Perturbation of central potentials | |
dc.subject.ucm | Física matemática | |
dc.title | Collision orbits in the presence of perturbations. | |
dc.type | journal article | |
dc.volume.number | 358 | |
dcterms.references | [1] L. Meirovitch, Methods of Analytical Dynamics, Dover Publications, New York, 2003; V.I. Arnold, Mathematical Methods of Classical Mechanics, in: Graduate Texts in Mathematics, vol. 60, Springer-Verlag, New York, 1978. [2] E. Serra, S. Terracini, Nonlinear Anal. 22 (1994) 45; V. Coti Zelati, E. Serra, Ann. Mat. Pura Appl. 166 (1994) 343. [3] A. Ambrosetti, V. Coti Zelati, Math. Z. 201 (1989) 227; V. Coti Zelati, Nonlinear Anal. 12 (1988) 209. [4] Z. Makó, F. Szenkovits, Celestial Mech. Dynam. Astronom. 90 (2004) 51. [5] F. Diacu, E. Pérez-Chavela, M. Santoprete, J. Math. Phys. 46 (2005) 072701. [6] S. Axler, P. Bourdon,W. Ramey, Harmonic Function Theory, in: Graduate Texts in Mathematics, vol. 137, Springer-Verlag, New York, 2001. [7] R.J. Walker, Algebraic Curves, Springer-Verlag, New York, 1978. [8] S.S. Abhyankar, Algebraic Geometry for Scientists and Engineers, in: Mathematical Surveys and Monographs, vol. 35, American Mathematical Society, Providence, 1990; D. Eisenbud, Commutative Algebra with a View Towards Algebraic Geometry, in: Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1999. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 134ad262-ecde-4097-bca7-ddaead91ce52 | |
relation.isAuthorOfPublication.latestForDiscovery | 134ad262-ecde-4097-bca7-ddaead91ce52 |
Download
Original bundle
1 - 1 of 1