Aviso: por motivos de mantenimiento y mejora del repositorio, mañana martes día 13 de mayo, entre las 9 y las 14 horas, Docta Complutense, no funcionará con normalidad. Disculpen las molestias.
 

Modelos matemáticos para el tratamiento de la enfermedad de Alzhéimer

dc.contributor.advisorCarpio, Ana
dc.contributor.authorRomero, Ferrón
dc.date.accessioned2023-06-21T10:41:37Z
dc.date.available2023-06-21T10:41:37Z
dc.date.defense2012
dc.date.issued2012
dc.description.abstractEl alzhéimer es una enfermedad neurodegenerativa progresiva que destruye la memoria y las habilidades cognitivas. El alzhéimer se caracteriza por la presencia de dos tipos de características neuropatológicas: placas extracelulares y ovillos neurofibrilares intracelulares. Este trabajo consiste en un estudio de cinco tipos distintos de medicamentos, modelizado mediante ecuaciones en derivadas parciales, mediante un análisis de sensibilidad usando el método LHS con el cual obtenernos correlaciones que nos hacen intuir que medicamento será más efectivo en el alzhéimer, por último, para culminar este estudio se usa el método de diferencias finitas de líneas para resolver estas ecuaciones y dar pie a un futuro estudio más exhaustivo.
dc.description.abstractAlzheimer is a progressive neurodegenerative disease that destroys memory and cognitive abilities. Alzheimer is characterized by the presence of types of neuropathological features: extracellular plaques and intracellular neurofibrillary tangles. This work consists in a study of five different types of drugs, model through derivations in partial derivatives, by means of a sensitivity analysis using the LHS method with which to obtain the correlations that make us intuit that the drug is more effective in the Alzheimer, finally, to complete this study, the method of finite differences of lines is used to solve these equations and give rise to a more exhaustive future study.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.statussubmitted
dc.eprint.idhttps://eprints.ucm.es/id/eprint/73631
dc.identifier.urihttps://hdl.handle.net/20.500.14352/68757
dc.language.isospa
dc.rights.accessRightsopen access
dc.subject.cdu519.87
dc.subject.cdu616.894-053.9
dc.subject.keywordModelos matemáticos
dc.subject.keywordAlzhéimer
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.ucmAnálisis matemático
dc.subject.ucmMedicina
dc.subject.unesco12 Matemáticas
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.subject.unesco32 Ciencias Médicas
dc.titleModelos matemáticos para el tratamiento de la enfermedad de Alzhéimer
dc.typebachelor thesis
dcterms.references[1] HAO, Wenrui, FRIEDMAN, Avner (2016), "Mathematical model on Alzheimer's disease", BMC Systems Biology BMC series - open, 18 noviembre. En: https://bmcsystbiol.biomedcentral.com/articles/10.1186/s12918-016-0348-2 [2] SIMEONE MARINO, IAN B. HOGUE, CHRISTIAN J. RAY, DENISE E. KIRSCHNER. (2008) “A methodology for performing global uncertainty and sensitivity analysis in systems biology” [3] S.M. BLOWER AND H. DOWLATABADIT . (2017) ,“Sensitivity and Uncertainty Analysis of Complex Models of Disease Transmission: an HIV Model, as an Example” [4] M. D. MCKAY AND R. J. BECKMAN . (1979), “A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code” [5] HELTON, J.C., DAVIS, F.J. (2003), “Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems”, Reliability Engineering & System Safety, Vol. 81, pp. 23-69. En: https://www.sciencedirect.com/science/article/pii/S0951832003000589 [6] GÓMEZ-CADENAS, J.J. (2005), El Método de Monte Carlo. En: http://benasque.org/benasque/2005tae/2005tae-talks/213s3.pdf [7] Application of Latin Hypercube Sampling in the Immune Genetic Algorithm for Solving the Maximum Clique Problem Zhou Benda and Chen Minghua Dept. of Mathematics & Physics West Anhui University Lu’an, China [8] RANKA, Sanjay, SAHNI, Sartaj, Hypercube Algorithms with Applications to Image Proccessing and Pattern Recognition, Bilkent University Lecture Series [9] ILLANA, José Ignacio (2013), Métodos Monte Carlo, Universidad de Granada. En: http://www.ugr.es/~jillana/Docencia/FM/mc.pdf [10] HELTON, J.C., DAVIS, F.J. (2003), “Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems”, Reliability Engineering & System Safety, Vol. 81, pp. 23-69. En: https://www.sciencedirect.com/science/article/pii/S0951832003000589 [11] GENEROSA FERNANDEZ MANIN, GUILLERMO GARCIA LOMBA.(2017), “Métodos numéricos par ecuaciones en derivadas parciales” [12] SAMIR HAMDI ,WILLIAM E. SCHIESSER , GRAHAM W. GRIFFITHS. (2009), “Method of Lines” [13] https://knowalzheimer.com/quien-fue-alois-alzheimer/ [14] http://www.iqb.es/neurologia/enfermedades/alzheimer/enfermedadpaciente/e003.htm
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Monica_Romero_Ferron_tfg.pdf
Size:
941.28 KB
Format:
Adobe Portable Document Format