Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Canonical double covers of minimal rational surfaces and the non-existence of carpets

dc.contributor.authorGallego Rodrigo, Francisco Javier
dc.contributor.authorGonzález, Miguel
dc.contributor.authorPurnaprajna, Bangere P.
dc.date.accessioned2023-06-19T13:21:19Z
dc.date.available2023-06-19T13:21:19Z
dc.date.issued2013-01
dc.description.abstracthis article delves into the relation between the deformation theory of finite morphisms to projective space and the existence of ropes, embedded in projective space, with certain invariants. We focus on the case of canonical double covers X of a minimal rational surface Y, embedded in P-N by a complete linear series, and carpets on Y, canonically embedded in P-N. We prove that these canonical double covers always deform to double covers and that canonically embedded carpets on Y do not exist. This fact parallels the results known for hyperelliptic canonical morphisms of curves and canonical ribbons, and the results for K3 double covers of surfaces of minimal degree and Enriques surfaces and K3 carpets. That canonical double covers of minimal rational surfaces should deform to double covers is not a priori obvious, for the invariants of most of these surfaces lie on or above the Castelnuovo line; thus, in principle, deformations of such covers could have birational canonical maps. In fact, many canonical double covers of non-minimal rational surfaces do deform to birational canonical morphisms. We also map the region of the geography of surfaces of general type corresponding to the surfaces X and we compute the dimension of the irreducible moduli component containing [X]. In certain cases we exhibit some interesting moduli components parameterizing surfaces S with the same invariants as X but with birational canonical map, unlike X.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipUCM
dc.description.sponsorshipSimons Foundation
dc.description.sponsorshipGRF of the University of Kansas
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/19872
dc.identifier.doi10.1016/j.jalgebra.2012.10.008
dc.identifier.issn0021-8693
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0021869312005066
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33254
dc.journal.titleJournal of Algebra
dc.language.isoeng
dc.page.final244
dc.page.initial231
dc.publisherAcademic Press
dc.relation.projectID910772
dc.relation.projectIDMTM2006-04785
dc.relation.projectIDMTM2009-06964
dc.rights.accessRightsrestricted access
dc.subject.cdu512
dc.subject.keywordDeformation of morphisms
dc.subject.keywordMultiple structures
dc.subject.keywordSurfaces of general type
dc.subject.keywordCanonical map
dc.subject.keywordModuli
dc.subject.keywordgeneral type
dc.subject.keywordalgebraic-surfaces
dc.subject.keyworddeformations
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleCanonical double covers of minimal rational surfaces and the non-existence of carpets
dc.typejournal article
dc.volume.number374
dcterms.referencesT. Ashikaga, K. Konno, Algebraic surfaces of general type with c21 = 3pg −7, Tohoku Math. J. (2) 42 (1990) 517–536. F. Catanese, On the moduli spaces of surfaces of general type, J. Differential Geom. 19 (1984) 483–515. L.Y. Fong, Rational ribbons and deformation of hyperelliptic curves, J. Algebraic Geom. 2 (1993) 295–307. F.J. Gallego, M. González, B.P. Purnaprajna, K3 double structures on Enriques surfaces and their smoothings, J. Pure Appl. Algebra 212 (2008) 981–993. F.J. Gallego, M. González, B.P. Purnaprajna, Deformation of canonical morphisms and the moduli of surfaces of general type, Invent. Math. 182 (2010) 1–46. F.J. Gallego, B.P. Purnaprajna, Degenerations of K3 surfaces in projective space, Trans. Amer. Math. Soc. 349 (1997) 2477–2492. M. González, Smoothing of ribbons over curves, J. Reine Angew. Math. 591 (2006) 201–235. R. Hartshorne, Algebraic Geometry, Grad. Texts in Math., vol. 52, Springer-Verlag, New York, 1977. E. Horikawa, On deformations of quintic surfaces, Invent. Math. 31 (1975) 43–85. E. Horikawa, Algebraic surfaces of general type with small c21. I, Ann. of Math. (2) 104 (1976) 357–387. K. Konno, On deformations and the local Torelli problem of cyclic branched coverings, Math. Ann. 271 (1985) 601–617. M. Nori, Zariski’s conjecture and related problems, Ann. Sci. École Norm. Sup. (4) 16 (1983) 305–344. E. Sernesi, Deformations of Algebraic Schemes, Grundlehren Math. Wiss., vol. 334, Springer-Verlag, 2006. J. Wavrik, Deformations of branch coverings of complex manifolds, Amer. J. Math. 90 (1968) 926–960. J. Wehler, Cyclic coverings: deformation and Torelli theorem, Math. Ann. 274 (1986) 443–472.
dspace.entity.typePublication
relation.isAuthorOfPublication708fdd58-694b-4a58-8267-1013d3272036
relation.isAuthorOfPublication.latestForDiscovery708fdd58-694b-4a58-8267-1013d3272036

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gallego100.pdf
Size:
227.88 KB
Format:
Adobe Portable Document Format

Collections