Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Inozemtsev's hyperbolic spin model and its related spin chain

Loading...
Thumbnail Image

Full text at PDC

Publication date

2010

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

In this paper we study Inozemtsev's su(m) quantum spin model with hyperbolic interactions and the associated spin chain of Haldane-Shastry type introduced by Frahm and Inozemtsev. We compute the spectrum of Inozemtsev's model, and use this result and the freezing trick to derive a simple analytic expression for the partition function of the Frahm-Inozemtsev chain. We show that the energy levels of the latter chain can be written in terms of the usual motifs for the Haldane-Shastry chain, although with a different dispersion relation. The formula for the partition function is used to analyze the behavior of the level density and the distribution of spacings between consecutive unfolded levels. We discuss the relevance of our results in connection with two well-known conjectures in quantum chaos.

Research Projects

Organizational Units

Journal Issue

Description

©2010 Elsevier B.V. All rights reserved. This work was partially supported by the Spanish Ministry of Science and Innovation under grant No. FIS2008-00209, and by the Universidad Complutense and Banco Santander under grant No. GR58/08-910556. J.C.B. acknowledges the financial support of the Spanish Ministry of Science and Innovation through an FPU scholarship. The authors would like to thank B. BasuMallick for useful discussions on A_(N−1)-type motifs.

Unesco subjects

Keywords

Collections