Sobre algunos espacios de funciones continuas en el círculo unidad
dc.book.title | Contribuciones matemáticas : homenaje al profesor Enrique Outerelo Domínguez | |
dc.contributor.author | Cillero, Elena | |
dc.contributor.author | Martín Peinador, Elena | |
dc.date.accessioned | 2023-06-20T13:39:27Z | |
dc.date.available | 2023-06-20T13:39:27Z | |
dc.date.issued | 2004 | |
dc.description.abstract | This paper studies the topological group structure of C(X,T), the group of continuous functions on the topological space X with values in the circle group T, with the topology of uniform convergence on compact subsets of X. For the main part, attention is restricted to the case X=Q, the rational numbers with either the Euclidean or Bohr topologies. The style of the paper is largely expository, though some new results are proved. It is shown for instance that while the homomorphism group Hom(Q,T) (also known as Qˆ) is topologically isomorphic to Hom(R,T) (and, thus, to R), the group C(Q,T) is not even first countable. The group C(Q,T) is next realized as the completion of C(Qb,T), where Qb stands for the group Q equipped with its Bohr topology, the one induced by all continuous characters (homomorphisms into T) of Q. Another set of results concerns the duality properties of these groups. Here the authors represent C(Qb,T) as the character group of the free abelian topological group A(Qb,T) and exploit the duality properties of the latter to show that C(Qb,T) is a reflexive topological group. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/21681 | |
dc.identifier.isbn | 84-7491-767-0 | |
dc.identifier.officialurl | http://www.mat.ucm.es/~jesusr/Enrique/pdfs/martin.pdf | |
dc.identifier.relatedurl | http://www.mat.ucm.es | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/53244 | |
dc.language.iso | spa | |
dc.page.final | 89 | |
dc.page.initial | 77 | |
dc.page.total | 406 | |
dc.publication.place | Madrid | |
dc.publisher | Editorial Complutense | |
dc.relation.ispartofseries | Homenajes de la Universidad Complutense | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 515.1 | |
dc.subject.cdu | 512.546 | |
dc.subject.keyword | Grupo topológico libre abeliano | |
dc.subject.keyword | números racionales | |
dc.subject.keyword | dualidad de Pontryagin | |
dc.subject.keyword | topología de Bohr | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | Sobre algunos espacios de funciones continuas en el círculo unidad | |
dc.type | book part | |
dcterms.references | R.F. Arens: A topology for spaces of transformations. Annals of Math. 47 (1946), no.3, 47–95. L. Aussenhofer: Contributions to the duality theory of abelian topological groups and to the theory of nuclear groups. Dissertationes Math. CCCLXXXIV, Warszawa, 1999. W. Banaszczyk: Additive subgroups of topological vector spaces. Lecture Notes Math. 1466, Springer-Verlag, Berlin 1991. W. Banaszczyk, E. Martín–Peinador: The Glicksberg theorem on weakly compact sets for nuclear groups. Ann. New York Acad. Sciences 788 (1996), 34–39. M.J. Chasco: Pontryagin duality for metrizable groups. Arch. Math. 70 (1998), 22–28. E. Cillero: Caracteres del grupo aditivo de los racionales. Rev. Real Acad. Ciencias de Zaragoza 58 (2003), 115–128. R. Engelking: General topology. Heldermann Verlag, Berlin 1989. S. Hernández, J. Galindo: Pontryagin–van Kampen reflexivity for free abelian topological groups. Forum Math. 11 (1999), 399–415. S. Hernández, V. Uspenskij: Pontryagin duality for spaces of continuous functions. J. Math. Anal. Appl. 242 (2000), no.2, 135–144. E. Hewitt, K.A. Ross: Abstract harmonic analysis I. Grund. Math. Wissens. 115, Spinger, 1963. N. Noble: k-Groups and duality. Transactions AMS 151 (1970), 551–561. J. Margalef–Roig, E. Outerelo, J.L. Pinilla: Topología, V. Ed. Alhambra S.A., Madrid 1982. V.G. Pestov: Free abelian topological groups and the Pontryagin–van Kampen duality. Bull. Austral. Math. Soc. 52 (1995), 297–311. M. Tkachenko: On completeness of free abelian topological groups. Soviet Math. Dokl. 27 (1983), 341–345. S. Warner: The topology of compact convergence on continuous function spaces. Duke Math J. 25 (1958), 265–282. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 0074400c-5caa-43fa-9c45-61c4b6f02093 | |
relation.isAuthorOfPublication.latestForDiscovery | 0074400c-5caa-43fa-9c45-61c4b6f02093 |
Download
Original bundle
1 - 1 of 1