Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Absence of weak localization in two-dimensional disordered Frenkel lattices

dc.contributor.authorRodriguez, A.
dc.contributor.authorMartín-Delgado Alcántara, Miguel Ángel
dc.contributor.authorRodriguez-Laguna, J.
dc.contributor.authorSierra, G.
dc.contributor.authorMalyshev, Andrey
dc.contributor.authorDomínguez-Adame Acosta, Francisco
dc.contributor.authorLemaistre, I. J.
dc.date.accessioned2023-06-20T19:10:34Z
dc.date.available2023-06-20T19:10:34Z
dc.date.issued2001-12
dc.description© 2001 Elsevier Science B.V. All rights reserved. International Conference on Dynamical Proces Excited States of Solids (30. 2001. Villeurbanne, Francia) The authors thank E. Macía, A. Sánchez, E. Díez, R. Römer and M. Hilke for discussions. F. D-A. and A. R. were supported by DGI-MCyT (Project MAT2000-0734). V. A. M. acknowledges support from INTAS (Project No. 97-10434).
dc.description.abstractThe standard one-parameter scaling theory predicts that all eigenstates in two-dimensional random lattices are weakly localized. We show that this claim fails in two-dimensional dipolar Frenkel exciton systems. The linear energy dispersion at the top of the exciton band, originating from the long-range inter-site coupling of dipolar nature, yields the same size-scaling law for the level spacing and the effective disorder seen by the exciton. This finally results in the delocalization of those eigenstates in the thermodynamic limit. Large scale numerical simulations allow us to perform a detailed multifractal analysis and to elucidate the nature of the excitonic eigenstates.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGI-MCyT
dc.description.sponsorshipINTAS
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27530
dc.identifier.doi10.1016/S0022-2313(01)00302-7
dc.identifier.issn0022-2313
dc.identifier.officialurlhttp://dx.doi.org/10.1016/S0022-2313(01)00302-7
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.relatedurlhttp://arxiv.org/abs/cond-mat/0201535
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59351
dc.journal.titleJournal of Luminescence
dc.language.isoeng
dc.page.final363
dc.page.initial359
dc.publisherElsevier Science BV
dc.relation.projectIDMAT2000-0734
dc.relation.projectIDNo. 97-10434
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keyword2-Dimensional Anderson Model
dc.subject.keywordOff-Diagonal Disorder
dc.subject.keywordQuantum Diffusion
dc.subject.keywordSystems
dc.subject.keywordStates
dc.subject.ucmFísica de materiales
dc.titleAbsence of weak localization in two-dimensional disordered Frenkel lattices
dc.typejournal article
dc.volume.number94
dcterms.references[1] E. Abrahams, P. W. Anderson, D. C. Licciardello, and V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979). [2] M. Inui, S. A. Trugman, and E. Abrahams, Phys. Rev. B 49, 3190 (1994). [3] A. Eilmes, R. A. Römer, and M. Schreiber, Eur. Phys. J. B 1, 29 (1998); phys. stat. sol. (b) 205, 229 (1998). [4] J. C. Flores, J. Phys.: Condens. Matter 1, 8471 (1989). [5] D. H. Dunlap, H.-L. Wu, and P. Phillips, Phys. Rev. Lett. 65, 88 (1990). [6] V. Bellani, E. Diez, R. Hey, L. Toni, L. Tarricone, G. B. Parravicini, F. DomínguezAdame, and R. Gómez-Alcalá, Phys. Rev. Lett. 82, 2159 (1999). [7] D. E. Logan and P. G. Wolynes, Phys. Rev. B 29, 6560 (1984); ibid. 31, 2437 (1985); ibid. 36, 4135 (1987); J. Chem. Phys. 87, 7199 (1987). [8] L. S. Levitov, Ann. Phys. (Leipzig) 8, 507 (1999). [9] A. Rodríguez, V. A. Malyshev, and F. Domínguez-Adame, J. Phys. A: Math. Gen. 33 L161 (2000). [10] P. L. Christiansen, Yu. B. Gaididei, M. Johansson, K. Ø. Rasmussen, V. K. Mezentsev, and J. Juul Rasmussen, Phys. Rev. B 57, 11 303 (1998). [11] G. H. Golub and C. F. Van Loan, Matrix Computations (The Johns Hopkins University Press, Maryland, 1996). [12] K. H. Hoffmann and M. Schreiber (Eds.), Computational Physics (Springer, Berlin, (1996).
dspace.entity.typePublication
relation.isAuthorOfPublication1cfed495-7729-410a-b898-8196add14ef6
relation.isAuthorOfPublicationb2abe0ef-0417-4f43-8dce-55d3205e22ec
relation.isAuthorOfPublicationdbc02e39-958d-4885-acfb-131220e221ba
relation.isAuthorOfPublication.latestForDiscoveryb2abe0ef-0417-4f43-8dce-55d3205e22ec

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dguez-Adame76preprint.pdf
Size:
103.86 KB
Format:
Adobe Portable Document Format

Collections