The Bohr radius of the $ n $-dimensional polydisk is equivalent to $\ sqrt {\ frac {\ log n}{n}} $
dc.contributor.author | Bayart, F. | |
dc.contributor.author | Pellegrino, D. | |
dc.contributor.author | Seoane-Sepúlveda, Juan B. | |
dc.date.accessioned | 2023-06-19T13:29:19Z | |
dc.date.available | 2023-06-19T13:29:19Z | |
dc.date.issued | 2014 | |
dc.description.abstract | We show that the Bohr radius of the polydisk $\mathbb D^n$ behaves asymptotically as $\sqrt{(\log n)/n}$. Our argument is based on a new interpolative approach to the Bohnenblust--Hille inequalities which allows us to prove that the polynomial Bohnenblust--Hille inequality is subexponential. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | CAPES | |
dc.description.sponsorship | CNPq | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/29049 | |
dc.identifier.doi | 10.1016/j.aim.2014.07.029 | |
dc.identifier.issn | 0001-8708 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S000187081400262X | |
dc.identifier.relatedurl | http://arxiv.org/abs/1310.2834 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/33847 | |
dc.journal.title | Advances in mathematics | |
dc.language.iso | eng | |
dc.page.final | 746 | |
dc.page.initial | 726 | |
dc.publisher | Elsevier | |
dc.relation.projectID | Grant 401735/2013-3 (PVE – Linha 2) | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51 | |
dc.subject.keyword | Bohr radius | |
dc.subject.keyword | Interpolation | |
dc.subject.keyword | Bohnenblust–Hille inequality | |
dc.subject.ucm | Matemáticas (Matemáticas) | |
dc.subject.unesco | 12 Matemáticas | |
dc.title | The Bohr radius of the $ n $-dimensional polydisk is equivalent to $\ sqrt {\ frac {\ log n}{n}} $ | |
dc.type | journal article | |
dc.volume.number | 264 | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1