Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Large radial solutions of a polyharmonic equation with superlinear growth

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorLazzo, Mónica
dc.contributor.authorSchmidt, Paul G.
dc.date.accessioned2023-06-20T10:52:49Z
dc.date.available2023-06-20T10:52:49Z
dc.date.issued2007
dc.description2006 International Conference in Honor of Jacqueline Fleckinger
dc.description.abstractThis paper concerns the equation ∆mu = |u| p, where m ∈ N, p ∈ (1, ∞), and ∆ denotes the Laplace operator in RN, for some N ∈ N. Specifically, we are interested in the structure of the set L of all large radial solutions on the open unit ball B in RN . In the well-understood second-order case, the set L consists of exactly two solutions if the equation is subcritical, of exactly one solution if it is critical or supercritical. In the fourth-order case, we show that L is homeomorphic to the unit circle S 1 if the equation is subcritical, to S 1 minus a single point if it is critical or supercritical. For arbitrary m ∈ N, the set L is a full (m − 1)-sphere whenever the equation is subcritical. We conjecture, but have not been able to prove in general, that L is a punctured (m − 1)-sphere whenever the equation is critical or supercritical. These results and the conjecture are closely related to the existence and uniqueness (up to scaling) of entire radial solutions. Understanding the geometric and topological structure of the set L allows precise statements about the existence and multiplicity of large radial solutions with prescribed center values u(0), ∆u(0), . . . , ∆m−1u(0).
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMIUR
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30353
dc.identifier.issn1072-6691
dc.identifier.officialurlhttp://ejde.math.txstate.edu/conf-proc/16/d2/diaz.pdf
dc.identifier.relatedurlhttp://ejde.math.txstate.edu/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51383
dc.journal.titleElectronic Journal of Differential Equations
dc.language.isoeng
dc.page.final123
dc.page.initial103
dc.publisherDepartment of Mathematics. Texas State University
dc.relation.projectIDMCT-2004-05417 (Spain)
dc.relation.projectIDProject “Metodi va riazionali e topologici ed equazioni differenziali non lineari.”
dc.rights.accessRightsopen access
dc.subject.cdu517.9
dc.subject.keywordPolyharmonic equation
dc.subject.keywordradial solutions
dc.subject.keywordentire solutions
dc.subject.keywordlarge solutions
dc.subject.keywordexistence and multiplicity
dc.subject.keywordboundary blow-up.
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleLarge radial solutions of a polyharmonic equation with superlinear growth
dc.typejournal article
dc.volume.number16
dcterms.referencesC. Bandle and M. Marcus, “Large” solutions of semilinear elliptic equations: Existence, uniqueness and asymptotic behaviour, J. Anal. Math. 58 (1992), 9–24. T. Bartsch, M. Schneider, and T. Weth, Multiple solutions of a critical polyharmonic equation, J. Reine Angew. Math. 571 (2004), 131–143. W. Chen, C. Li, and B. Ou, Classification of solutions for an integral equation, Comm.Pure Appl. Math. 59 (2006), 330–343. R. Dalmasso, Positive entire solutions of superlinear biharmonic equations, Funkcial. Ekvac. 34 (1991), 403–422. J. I. Diaz, M. Lazzo, and P. G. Schmidt, Large solutions for a system of elliptic equations arising from fluid dynamics, SIAM J. Math. Anal. 37 (2005), 490–513. J. I. Diaz, M. Lazzo, and P. G. Schmidt, Asymptotic behavior of large radial solutions of a polyharmonic equation with superlinear growth, in preparation. J. García-Melian and J. D. Rossi , Boundary blow-up solutions to elliptic systems of competitive type, J. Differ. Equations 206 (2004), 156–181. J. García-Melian and A. Suárez, Existence and uniqueness of positive large solutions to some cooperative elliptic systems, Adv. Nonlinear Stud. 3 (2003), 193–206. F. Gazzola and H.-Ch. Grunau, Radial entire solutions for supercritical biharmonic equations, Math. Ann. 334 (2006), 905–936. M. Ghergu and V. D. Radulescu , Explosive solutions of semilinear elliptic systems with gradient term, RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A. Mat. 97 (2003), 467–475. H.-Ch. Grunau, Polyharmonische Dirichletprobleme: Positivität, kritische Exponenten und kritische Dimensionen, Habilitationsschrift, Universität Bayreuth, 1996. H.-C. Grunau, M. Ould Ahmedou, and W. Reichel, The Paneitz equation in hyperbolic space, preprint. M. W. Hirsch, Systems of differential equation that are competitive or cooperative. III. Competing species, Nonlinearity 1 (1988), 51–71. M. Lazzo and P. G. Schmidt, Nodal properties of radial solutions for a class of polyharmonic equations, submitted. C.-S. Lin, A classification of solutions of a conformally invariant fourth order equation in Rn, Comment. Math. Helv. 73 (1998), 206–231. P. J. McKenna and W. Reichel, Radial solutions of singular nonlinear biharmonic equations and applications to conformal geometry, Electron. J. Differ. Equations 2003 (2003), 1–13. E. Mitidieri, A Rellich type identity and applications, Commun. Partial Differ. Equations 18 (1993), 125–151. T. Ouyang and Z. Xie, The uniqueness of blow-up solution for radially symmetric semilinear elliptic equations, Nonlinear Anal. Theory Methods Appl. 64 (2006), 2129–2142. P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math. J. 35 (1986),681–703. P. Pucci and J. Serrin, Critical exponents and critical dimensions for polyharmonic operators, J. Math. Pures Appl. 69 (1990), 55–83. P. Quittner, Continuity of the blow-up time and a priori bounds for solutions in superlinear parabolic problems, Houston J. Math. 29 (2003), 757–799. J. Serrin and H. Zou, Existence of positive solutions of the Lane-Emden system, Atti Sem. Mat. Fis. Univ. Modena 46 (1998), suppl., 369–380. R. Soranzo, A priori estimates and existence of positive solutions of a superlinear polyharmonic equation, Dynam. Systems Appl. 3 (1994), 465–487. C. A. Swanson, The best Sobolev constant, Applic. Anal. 47 (1992), 227–239. C. A. Swanson, Uniqueness for semilinear polyharmonic problems, Nonlinear Anal. Theory Methods Appl. 25 (1995), 1055–1062. L. Véron , Semilinear elliptic equations with uniform blow-up on the boundary, J. Anal. Math. 59 (1992), 231–250. W. Walter, Ordinary differential equations, Springer, Berlin, 1998. W. Walter and H. Rhee, Entire solutions of ∆pu = f(r, u), Proc. Roy. Soc. Edinburgh Sect. A 82 (1978/79), 189–192. J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann. 313 (1999), 207–228. X. Xu, Uniqueness theorem for the entire positive solutions of biharmonic equations in Rn, Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), 651–670.
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
172.pdf
Size:
900.16 KB
Format:
Adobe Portable Document Format

Collections