Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Thermal growth and luminescence of wurtzite ZnS nanowires and nanoribbons

dc.contributor.authorPiqueras De Noriega, Francisco Javier
dc.contributor.authorSotillo Buzarra, Belén
dc.contributor.authorFernández Sánchez, Paloma
dc.date.accessioned2023-06-20T03:36:26Z
dc.date.available2023-06-20T03:36:26Z
dc.date.issued2012-06-01
dc.description©2012 Elsevier B.V. This work was supported by MICINN (Projects MAT2009-07882 and CSD2009-0013). B. Sotillo acknowledges Ministerio de Educación (Subprograma FPU) of Spain for financial support.
dc.description.abstractZnS nanowires and nanoribbons have been obtained by the vapor–solid (VS) method. The morphology depends mainly on the deposition temperature; nanowires are grown at temperatures between 300 °C and 650 °C while the growth of nanoribbons takes place at deposition temperatures in the range 650 °C–900 °C. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies show that from cubic ZnS precursor hexagonal-phase nanostructures are obtained. Cathodoluminescence (CL) and photoluminescence (PL) measurements show a dominance of the native defects related emission compared to the near band edge emission, with marked differences between nanowires and nanoribbons.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMICINN (Ministerio de Ciencia e Innovación, España)
dc.description.sponsorshipMinisterio de Educación (Subprograma FPU) of Spain
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23631
dc.identifier.doi10.1016/j.jcrysgro.2012.04.002
dc.identifier.issn0022-0248
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.jcrysgro.2012.04.002
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44025
dc.issue.number1
dc.journal.titleJournal of Crystal Growth
dc.language.isoeng
dc.page.final90
dc.page.initial85
dc.publisherElsevier Science B.V.
dc.relation.projectIDMAT2009-07882
dc.relation.projectIDCSD2009-0013
dc.rights.accessRightsrestricted access
dc.subject.cdu538.9
dc.subject.keywordDoped ZnO
dc.subject.keywordSingle
dc.subject.keywordNanostructures
dc.subject.keywordNanobelts
dc.subject.keywordCathodoluminescence
dc.subject.keywordPhotoluminescence
dc.subject.keywordSemiconductors
dc.subject.keywordSpectroscopy
dc.subject.keywordTemperature
dc.subject.keywordDeposition
dc.subject.ucmFísica de materiales
dc.titleThermal growth and luminescence of wurtzite ZnS nanowires and nanoribbons
dc.typejournal article
dc.volume.number348
dcterms.references[1] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan. Advanced Materials, 15 (2003), pp. 353–389. [2] E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, G. Sberglieri. Progress in Materials Science, 54 (2009), pp. 1–67. [3] T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, D. Golberg. Sensors, 9 (2009), pp. 6504–6529. [4] X. Fang, Y. Bando, M. Liao, U.K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, D. Golberg. Advanced Materials, 21 (2009), pp. 2034–2039. [5] Z.G. Chen, J. Zou, G. Liu, H.F. Lu, F. Li, G.Q. Lu, H.M. Cheng. Nanotechnology, 19 (2008), p. 055710. [6] M.Y. Yu, J.H. Song, M.P. Lu, C.Y. Lee, L.J. Chen, Z.L. Wang. ACS Nano, 3 (2009), pp. 357–362. [7] Z.-G. Chen, L. Cheng, J. Zou, X. Yao, G.Q. Lu, H.-M. Cheng. Nanotechnology, 21 (2010), p. 065701. [8] Y. Wang, L. Zhang, C. Liang, G. Wang, X. Peng. Chemical Physics Letters, 357 (2002), pp. 314–318. [9] X. Fang, Y. Bando, C. Ye, G. Shen, D. Golberg. Journal of Physical Chemistry C, 111 (2007), pp. 8469–8474. [10] X.J. Xu, G.-T. Fei, W.-H. Yu, X.W. Wang, L. Chen, L.-D. Zhang. Nanotechnology, 17 (2006), pp. 426–429. [11] D. Moore, Z.L. Wang. Journal of Materials Chemistry, 16 (2006), pp. 3898–3905. [12] J. Hu, G. Wang, C. Guo, D. Li, L. Zhang, J. Zhao. Journal of Luminescence, 122-123 (2007), pp. 172–175. [13] T. Zhai, Z. Gu, Y. Ma, W. Yang, L. Zhao, J. Yao. Materials Chemistry and Physics, 100 (2006), pp. 281–284. [14] M.V. Limaye, S. Gokhale, S.A. Acharya, S.K. Kulkarni. Nanotechnology, 19 (2008), p. 415602. [15] C.-Y. Yeh, Z.W. Lu, S. Froyen, A. Zunger. Physical Review B, 46 (1992), pp. 10086–10097. [16] D. Moore, J.R. Morber, R.L. Snyder, Z.L. Wang. Journal of Physical Chemistry C, 112 (2008), pp. 2895–2903. [17] A. Urbieta, P. Fernández, J. Piqueras. Journal of Nano Research, 4 (2008), pp. 27–32. [18] Y. Ortega, P. Fernández, J. Piqueras. Journal of Applied Physics, 105 (2009), p. 054315. [19] Y. Ortega, P. Fernández, J. Piqueras. Journal of Crystal Growth, 311 (2009), pp. 3231–3234. [20] B. Alemán, P. Hidalgo, P. Fernández, J. Piqueras. Journal of Physics D: Applied Physics, 42 (2009), p. 225101. [21] Y. Ortega, P. Fernández, J. Piqueras. Journal of Nanoscience and Nanotechnology, 10 (2010), pp. 502–507. [22] S.B. Qadri, E.F. Skelton, D. Hsu, A.D. Dinsmore, J. Yang, H.F. Gray, B.R. Ratna. Physical Review B, 60 (1999), pp. 9191–9193. [23] C. Boudias, D. Monceau, CaRIne Crystallography 3.1, DIVERGENT S.A., Centre de Transfert, 60200 Compiègne, France, 1989–1998. [24] S. Kar, S. Chaudhuri. Chemical Physics Letters, 414 (2005), pp. 40–46. [25] C. Ma, D. Moore, Y. Ding, J. Li, Z.L. Wang. Advanced Materials, 15 (2003), pp. 228–231. [26] D. Moore, C. Ronning, C. Ma, Z.L. Wang. Chemical Physics Letters, 385 (2004), pp. 8–11. [27] A. Urbieta, P. Fernández, J. Piqueras, Ch Hardalov, T. Sekiguchi. Journal of Physics D: Applied Physics, 34 (2001), pp. 2945–2949. [28] X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, D. Golberg. Progress in Materials Science, 56 (2011), pp. 175–287. [29] J. Cao, J. Yang, Y. Zhang, L. Yang, D. Wang, M. Wei, Y. Wang, Y. Liu, M. Gao, X. Liu. Journal of Physics D: Applied Physics, 43 (2010), p. 075403. [30] D. Yuanyuan, J. Wanqi, L. Huanyong. Journal of Semiconductors, 30 (2009), p. 083005. [31] J.W. Allen. Semiconductor Science and Technology, 10 (1995), pp. 1049–1064. [32] Q. Li, C. Wang. Applied Physics Letters, 83 (2003), pp. 359–361. [33] S. Lee, D. Song, D. Kim., J. Lee, S. Kim, I.Y. Park, Y.D. Choi. Materials Letters, 58 (2004), pp. 342–346. [34] T. Mitsui, N. Yamamoto, T. Tadokoro, S. Ohta. Journal of Applied Physics, 80 (1996), pp. 6972–6979. [35] H. Chen. Journal of Materials Science, 46 (2011), pp. 2715–2719. [36] Y. Changhui, X. Fang, L. Guanghai, L. Zhang. Applied Physics Letters, 85 (2004), pp. 3035–3037. [37] J. Zheng, J.W. Allen. Semiconductor Science and Technology, 5 (1990), pp. 1013–1017. [38] A. Urbieta, P. Fernández, J. Piqueras, T. Sekiguchi. Semiconductor Science and Technology, 16 (2001), pp. 589–593. [39] J.F. Scott, T.C. Damen, W.T. Silfvast, R.C.C. Leite, L.E. Cheesman. Optics Communications, 1 (1970), pp. 397–399.
dspace.entity.typePublication
relation.isAuthorOfPublication68dabfe9-5aec-4207-bf8a-0851f2e37e2c
relation.isAuthorOfPublication11b0d4f7-eac9-4288-b158-f8d1cdec0083
relation.isAuthorOfPublicationdaf4b879-c4a8-4121-aaff-e6ba47195545
relation.isAuthorOfPublication.latestForDiscovery11b0d4f7-eac9-4288-b158-f8d1cdec0083

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PiquerasJ17.pdf
Size:
1.19 MB
Format:
Adobe Portable Document Format

Collections