Thermal growth and luminescence of wurtzite ZnS nanowires and nanoribbons
dc.contributor.author | Piqueras De Noriega, Francisco Javier | |
dc.contributor.author | Sotillo Buzarra, Belén | |
dc.contributor.author | Fernández Sánchez, Paloma | |
dc.date.accessioned | 2023-06-20T03:36:26Z | |
dc.date.available | 2023-06-20T03:36:26Z | |
dc.date.issued | 2012-06-01 | |
dc.description | ©2012 Elsevier B.V. This work was supported by MICINN (Projects MAT2009-07882 and CSD2009-0013). B. Sotillo acknowledges Ministerio de Educación (Subprograma FPU) of Spain for financial support. | |
dc.description.abstract | ZnS nanowires and nanoribbons have been obtained by the vapor–solid (VS) method. The morphology depends mainly on the deposition temperature; nanowires are grown at temperatures between 300 °C and 650 °C while the growth of nanoribbons takes place at deposition temperatures in the range 650 °C–900 °C. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies show that from cubic ZnS precursor hexagonal-phase nanostructures are obtained. Cathodoluminescence (CL) and photoluminescence (PL) measurements show a dominance of the native defects related emission compared to the near band edge emission, with marked differences between nanowires and nanoribbons. | |
dc.description.department | Depto. de Física de Materiales | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | MICINN (Ministerio de Ciencia e Innovación, España) | |
dc.description.sponsorship | Ministerio de Educación (Subprograma FPU) of Spain | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/23631 | |
dc.identifier.doi | 10.1016/j.jcrysgro.2012.04.002 | |
dc.identifier.issn | 0022-0248 | |
dc.identifier.officialurl | http://dx.doi.org/10.1016/j.jcrysgro.2012.04.002 | |
dc.identifier.relatedurl | http://www.sciencedirect.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/44025 | |
dc.issue.number | 1 | |
dc.journal.title | Journal of Crystal Growth | |
dc.language.iso | eng | |
dc.page.final | 90 | |
dc.page.initial | 85 | |
dc.publisher | Elsevier Science B.V. | |
dc.relation.projectID | MAT2009-07882 | |
dc.relation.projectID | CSD2009-0013 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 538.9 | |
dc.subject.keyword | Doped ZnO | |
dc.subject.keyword | Single | |
dc.subject.keyword | Nanostructures | |
dc.subject.keyword | Nanobelts | |
dc.subject.keyword | Cathodoluminescence | |
dc.subject.keyword | Photoluminescence | |
dc.subject.keyword | Semiconductors | |
dc.subject.keyword | Spectroscopy | |
dc.subject.keyword | Temperature | |
dc.subject.keyword | Deposition | |
dc.subject.ucm | Física de materiales | |
dc.title | Thermal growth and luminescence of wurtzite ZnS nanowires and nanoribbons | |
dc.type | journal article | |
dc.volume.number | 348 | |
dcterms.references | [1] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan. Advanced Materials, 15 (2003), pp. 353–389. [2] E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, G. Sberglieri. Progress in Materials Science, 54 (2009), pp. 1–67. [3] T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, D. Golberg. Sensors, 9 (2009), pp. 6504–6529. [4] X. Fang, Y. Bando, M. Liao, U.K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, D. Golberg. Advanced Materials, 21 (2009), pp. 2034–2039. [5] Z.G. Chen, J. Zou, G. Liu, H.F. Lu, F. Li, G.Q. Lu, H.M. Cheng. Nanotechnology, 19 (2008), p. 055710. [6] M.Y. Yu, J.H. Song, M.P. Lu, C.Y. Lee, L.J. Chen, Z.L. Wang. ACS Nano, 3 (2009), pp. 357–362. [7] Z.-G. Chen, L. Cheng, J. Zou, X. Yao, G.Q. Lu, H.-M. Cheng. Nanotechnology, 21 (2010), p. 065701. [8] Y. Wang, L. Zhang, C. Liang, G. Wang, X. Peng. Chemical Physics Letters, 357 (2002), pp. 314–318. [9] X. Fang, Y. Bando, C. Ye, G. Shen, D. Golberg. Journal of Physical Chemistry C, 111 (2007), pp. 8469–8474. [10] X.J. Xu, G.-T. Fei, W.-H. Yu, X.W. Wang, L. Chen, L.-D. Zhang. Nanotechnology, 17 (2006), pp. 426–429. [11] D. Moore, Z.L. Wang. Journal of Materials Chemistry, 16 (2006), pp. 3898–3905. [12] J. Hu, G. Wang, C. Guo, D. Li, L. Zhang, J. Zhao. Journal of Luminescence, 122-123 (2007), pp. 172–175. [13] T. Zhai, Z. Gu, Y. Ma, W. Yang, L. Zhao, J. Yao. Materials Chemistry and Physics, 100 (2006), pp. 281–284. [14] M.V. Limaye, S. Gokhale, S.A. Acharya, S.K. Kulkarni. Nanotechnology, 19 (2008), p. 415602. [15] C.-Y. Yeh, Z.W. Lu, S. Froyen, A. Zunger. Physical Review B, 46 (1992), pp. 10086–10097. [16] D. Moore, J.R. Morber, R.L. Snyder, Z.L. Wang. Journal of Physical Chemistry C, 112 (2008), pp. 2895–2903. [17] A. Urbieta, P. Fernández, J. Piqueras. Journal of Nano Research, 4 (2008), pp. 27–32. [18] Y. Ortega, P. Fernández, J. Piqueras. Journal of Applied Physics, 105 (2009), p. 054315. [19] Y. Ortega, P. Fernández, J. Piqueras. Journal of Crystal Growth, 311 (2009), pp. 3231–3234. [20] B. Alemán, P. Hidalgo, P. Fernández, J. Piqueras. Journal of Physics D: Applied Physics, 42 (2009), p. 225101. [21] Y. Ortega, P. Fernández, J. Piqueras. Journal of Nanoscience and Nanotechnology, 10 (2010), pp. 502–507. [22] S.B. Qadri, E.F. Skelton, D. Hsu, A.D. Dinsmore, J. Yang, H.F. Gray, B.R. Ratna. Physical Review B, 60 (1999), pp. 9191–9193. [23] C. Boudias, D. Monceau, CaRIne Crystallography 3.1, DIVERGENT S.A., Centre de Transfert, 60200 Compiègne, France, 1989–1998. [24] S. Kar, S. Chaudhuri. Chemical Physics Letters, 414 (2005), pp. 40–46. [25] C. Ma, D. Moore, Y. Ding, J. Li, Z.L. Wang. Advanced Materials, 15 (2003), pp. 228–231. [26] D. Moore, C. Ronning, C. Ma, Z.L. Wang. Chemical Physics Letters, 385 (2004), pp. 8–11. [27] A. Urbieta, P. Fernández, J. Piqueras, Ch Hardalov, T. Sekiguchi. Journal of Physics D: Applied Physics, 34 (2001), pp. 2945–2949. [28] X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, D. Golberg. Progress in Materials Science, 56 (2011), pp. 175–287. [29] J. Cao, J. Yang, Y. Zhang, L. Yang, D. Wang, M. Wei, Y. Wang, Y. Liu, M. Gao, X. Liu. Journal of Physics D: Applied Physics, 43 (2010), p. 075403. [30] D. Yuanyuan, J. Wanqi, L. Huanyong. Journal of Semiconductors, 30 (2009), p. 083005. [31] J.W. Allen. Semiconductor Science and Technology, 10 (1995), pp. 1049–1064. [32] Q. Li, C. Wang. Applied Physics Letters, 83 (2003), pp. 359–361. [33] S. Lee, D. Song, D. Kim., J. Lee, S. Kim, I.Y. Park, Y.D. Choi. Materials Letters, 58 (2004), pp. 342–346. [34] T. Mitsui, N. Yamamoto, T. Tadokoro, S. Ohta. Journal of Applied Physics, 80 (1996), pp. 6972–6979. [35] H. Chen. Journal of Materials Science, 46 (2011), pp. 2715–2719. [36] Y. Changhui, X. Fang, L. Guanghai, L. Zhang. Applied Physics Letters, 85 (2004), pp. 3035–3037. [37] J. Zheng, J.W. Allen. Semiconductor Science and Technology, 5 (1990), pp. 1013–1017. [38] A. Urbieta, P. Fernández, J. Piqueras, T. Sekiguchi. Semiconductor Science and Technology, 16 (2001), pp. 589–593. [39] J.F. Scott, T.C. Damen, W.T. Silfvast, R.C.C. Leite, L.E. Cheesman. Optics Communications, 1 (1970), pp. 397–399. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 68dabfe9-5aec-4207-bf8a-0851f2e37e2c | |
relation.isAuthorOfPublication | 11b0d4f7-eac9-4288-b158-f8d1cdec0083 | |
relation.isAuthorOfPublication | daf4b879-c4a8-4121-aaff-e6ba47195545 | |
relation.isAuthorOfPublication.latestForDiscovery | 11b0d4f7-eac9-4288-b158-f8d1cdec0083 |
Download
Original bundle
1 - 1 of 1