Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Separation of extracellular spikes: When wavelet based methods outperform the principle component analysis

dc.book.titleMechanisms, Symbols, and Models Underlying Cognition
dc.contributor.authorMakarov Slizneva, Valeriy
dc.contributor.authorPavlov, Alexey N.
dc.contributor.authorMakarova, J.
dc.contributor.authorPanetsos Petrova, Fivos
dc.contributor.editorMira, J
dc.contributor.editorÁlvarez, JR
dc.date.accessioned2023-06-20T13:38:24Z
dc.date.available2023-06-20T13:38:24Z
dc.date.issued2005
dc.description1st International Work-Conference on the Interplay Between Natural and Artificial Computation. Las Palmas, SPAIN. JUN 15-18, 2005.
dc.description.abstractSpike separation is a basic prerequisite for analyzing of the cooperative neural behavior and neural code when registering extracellularly. Final performance of any spike sorting method is basically defined by the quality of the discriminative features extracted from the spike waveforms. Here we discuss two features extraction approaches: the Principal Component Analysis (PCA), and methods based on the Wavelet Transform (WT). We show that the WT based methods outperform the PCA only when properly tuned to the data, otherwise their results may be comparable or even worse. Then we present a novel method of spike features extraction based on a combination of the PCA and continuous WT. Our approach allows automatic tuning of the wavelet part of the method by the use of knowledge obtained from the PCA. To illustrate the methods strength and weakness we provide comparative examples of their performances using simulated and experimental data.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16843
dc.identifier.isbn3-540-26298-9
dc.identifier.officialurlhttp://www.springerlink.com/content/ynp8gbbdj4cdkntk/fulltext.pdf?MUD=MP
dc.identifier.relatedurlhttp://www.springerlink.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/53152
dc.issue.number3561
dc.language.isoeng
dc.page.final132
dc.page.initial123
dc.publisherSPRINGER-VERLAG BERLIN
dc.relation.ispartofseriesLecture Notes in Computer Science
dc.relation.projectIDEU-IST-2001-34892
dc.rights.accessRightsrestricted access
dc.subject.cdu512.74
dc.subject.ucmGrupos (Matemáticas)
dc.titleSeparation of extracellular spikes: When wavelet based methods outperform the principle component analysisen
dc.typebook part
dspace.entity.typePublication
relation.isAuthorOfPublicationa5728eb3-1e14-4d59-9d6f-d7aa78f88594
relation.isAuthorOfPublication1279018d-18b3-4bb8-b291-d43947d907b2
relation.isAuthorOfPublication.latestForDiscoverya5728eb3-1e14-4d59-9d6f-d7aa78f88594

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Makarov23.pdf
Size:
909.48 KB
Format:
Adobe Portable Document Format