Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The effect of block parameter perturbations in Gaussian Bayesian networks: Sensitivity and robustness

dc.contributor.authorGómez Villegas, Miguel Ángel
dc.contributor.authorMain Yaque, Paloma
dc.contributor.authorSusi García, María Del Rosario
dc.date.accessioned2023-06-19T13:21:25Z
dc.date.available2023-06-19T13:21:25Z
dc.date.issued2013-02
dc.description.abstractn this work we study the effects of model inaccuracies on the description of a Gaussian Bayesian network with a set of variables of interest and a set of evidential variables. Using the Kullback-Leibler divergence measure, we compare the output of two different networks after evidence propagation: the original network, and a network with perturbations representing uncertainties in the quantitative parameters. We describe two methods for analyzing the sensitivity and robustness of a Gaussian Bayesian network on this basis. In the sensitivity analysis, different expressions are obtained depending on which set of parameters is considered inaccurate. This fact makes it possible to determine the set of parameters that most strongly disturbs the network output. If all of the divergences are small, we can conclude that the network output is insensitive to the proposed perturbations. The robustness analysis is similar, but considers all potential uncertainties jointly. It thus yields only one divergence, which can be used to confirm the overall sensitivity of the network. Some practical examples of this method are provided, including a complex, real-world problemen
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipMetodos Bayesianos by the BSCH-UCM from Spain
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20335
dc.identifier.citationGómez Villegas, M. A., Main Yaque, P. & Susi García, M. R. «The Effect of Block Parameter Perturbations in Gaussian Bayesian Networks: Sensitivity and Robustness». Information Sciences, vol. 222, febrero de 2013, pp. 439-58. DOI.org (Crossref), https://doi.org/10.1016/j.ins.2012.08.004.
dc.identifier.doi10.1016/j.ins.2012.08.004
dc.identifier.issn0020-0255
dc.identifier.officialurlhttps//doi.org/10.1016/j.ins.2012.08.004
dc.identifier.relatedurlhttp://www.sciencedirect.com/science/article/pii/S0020025512005518
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33271
dc.journal.titleInformation Sciences
dc.language.isoeng
dc.page.final458
dc.page.initial439
dc.publisherElsevier Science Inc
dc.relation.projectIDMTM 2008-03282
dc.relation.projectIDGR58/08-A 910395
dc.rights.accessRightsrestricted access
dc.subject.cdu519.2
dc.subject.keywordDecision support system
dc.subject.keywordGaussian Bayesian network
dc.subject.keywordSensitivity analysis
dc.subject.keywordRobustness analysis
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.unesco1209 Estadística
dc.titleThe effect of block parameter perturbations in Gaussian Bayesian networks: Sensitivity and robustnessen
dc.typejournal article
dc.volume.number222
dspace.entity.typePublication
relation.isAuthorOfPublicationc8f6ba8b-2df4-4f4a-ac9a-76e7b061e41a
relation.isAuthorOfPublicationec909d41-f0c0-40b7-9d6e-1346e1e9ef43
relation.isAuthorOfPublication13d8b9f8-7ca8-4115-ab2f-6aa12784b434
relation.isAuthorOfPublication.latestForDiscoveryec909d41-f0c0-40b7-9d6e-1346e1e9ef43

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Main100.pdf
Size:
810.04 KB
Format:
Adobe Portable Document Format

Collections