Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Rescaled density expansions and demixing in hard-sphere binary mixtures

dc.contributor.authorLópez de Haro, M.
dc.contributor.authorFernández Tejero, Carlos
dc.date.accessioned2023-06-20T10:39:00Z
dc.date.available2023-06-20T10:39:00Z
dc.date.issued2004-10-08
dc.description© 2004 American Institute of Physics. The authors acknowledge financial support from DGAPA-UNAM (México) (M.L.H.) and from the Ministerio de Ciencia y Tecnología (Spain) Ref. BFM2001-1017- C03-03 (C.F.T.).
dc.description.abstractThe demixing transition of a binary fluid mixture of additive hard spheres is analyzed for different size asymmetries by starting from the exact low-density expansion of the pressure. Already within the second virial approximation the fluid separates into two phases of different composition with a lower consolute critical point. By successively incorporating the third, fourth, and fifth virial coefficients, the critical consolute point moves to higher values of the pressure and to lower values of the partial number fraction of the large spheres. When the exact low-density expansion of the pressure is rescaled to higher densities as in the Percus-Yevick theory, by adding more exact virial coefficients a different qualitative movement of the critical consolute point in the phase diagram is found. It is argued that the Percus-Yevick factor appearing in many empirical equations of state for the mixture has a deep influence on the location of the critical consolute point, so that the resulting phase diagram for a prescribed equation has to be taken with caution.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGAPA-UNAM (México)
dc.description.sponsorshipMinisterio de Ciencia y Tecnología (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23735
dc.identifier.doi10.1063/1.1791611
dc.identifier.issn0021-9606
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.1791611
dc.identifier.relatedurlhttp://scitation.aip.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50894
dc.issue.number14
dc.journal.titleJournal of Chemical Physics
dc.language.isoeng
dc.page.final6921
dc.page.initial6918
dc.publisherAmerican Institute of Physics
dc.relation.projectIDBFM2001-1017-C03-03
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordPair correlation-functions
dc.subject.keywordEquation-of-state
dc.subject.keywordVirial-coefficients
dc.subject.keywordThermodynamic properties
dc.subject.keywordPhase-separation
dc.subject.keywordConvex-bodies
dc.subject.keywordFluids
dc.subject.keywordGases
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleRescaled density expansions and demixing in hard-sphere binary mixtures
dc.typejournal article
dc.volume.number121
dcterms.references1 J. L. Lebowitz, Phys. Rev. 133, 895 (1964). 2 J. L. Lebowitz and J. W. Rowlinson, J. Chem. Phys. 41, 133 (1964). 3 T. Boublík, J. Chem. Phys. 53, 471 (1970); G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W. Leland, ibid. 54, 1523 (1971). 4 T. Biben and J. P. Hansen, Phys. Rev. Lett. 66, 2215 (1991). 5 C. Barrio and J. R. Solana, J. Chem. Phys. 119, 3826 (2003). 6 T. Coussaert and M. Baus, Phys. Rev. Lett. 79, 1881 (1997); 80, 4832 (1998); J. Chem. Phys. 109, 6012 (1998). 7 C. Regnaut, A. Dyan, and S. Amokrane, Mol. Phys. 99, 2055 (2001). 8 T. Kihara, Rev. Mod. Phys. 27, 412 (1955). 9 T. Kihara and K. Miyoshi, J. Stat. Phys. 13, 337 (1975). 10 F. Saija, G. Fiumara, and P. V. Giaquinta, Mol. Phys. 87, 991 (1996). 11 E. Enciso, N. G. Almarza, D. S. Calzas, and M. A. González, Mol. Phys. 92, 173 (1997). 12 E. Enciso, N. G. Almarza, M. A. González, and F. J. Bermejo, Phys. Rev. E 57, 4486 (1998). 13 R. J. Wheatley, F. Saija, and P. V. Giaquinta, Mol. Phys. 94, 877 (1998). 14 A. Yu. Vlasov, X. M. You, and A. J. Masters, Mol. Phys. 100, 3313 (2002). 15 S. B. Yuste, A. Santos, and M. López de Haro, Europhys. Lett. 52, 158 (2000). 16 E. Z. Hamad, J. Chem. Phys. 103, 3733 (1995). 17 A. Santos, S. B. Yuste, and M. López de Haro, Mol. Phys. 96, 1 (1999); J. Chem. Phys. 117, 5785 (2002). 18 M. Barosová, A. Malijevský, S. Labík, and W. R. Smith, Mol. Phys. 87, 423 (1996). 19 D. L. H. Yau, K. Y. Chan, and D. Henderson, Mol. Phys. 88, 1237 (1996). 20 A. Malijevský and J. Veverka, Phys. Chem. Chem. Phys. 1, 4267 (1999). 21 D. Cao, K. Y. Chan, and D. Henderson, Mol. Phys. 98, 619 (2000). 22 A. Yu. Vlasov and A. J. Masters, Fluid Phase Equilib. 212, 183 (2003).
dspace.entity.typePublication
relation.isAuthorOfPublication45ce99f0-8f7e-41b5-ac11-1ae7ba368c80
relation.isAuthorOfPublication.latestForDiscovery45ce99f0-8f7e-41b5-ac11-1ae7ba368c80

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
F-Tejero03libre.pdf
Size:
346.31 KB
Format:
Adobe Portable Document Format

Collections