Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Entropy maximization and the busy period of some single-server vacation models

dc.contributor.authorArtalejo Rodríguez, Jesús Manuel
dc.contributor.authorLópez Herrero, María Jesús
dc.date.accessioned2023-06-20T09:36:27Z
dc.date.available2023-06-20T09:36:27Z
dc.date.issued2004-07
dc.descriptionThis research was supported by the project BFM2002-02189.
dc.description.abstractIn this paper, information theoretic methodology for system modeling is applied to investigate the probability density function of the busy period in M/G/1 vacation models operating under the N-, T- and D-policies. The information about the density function is limited to a few mean value constraints (usually the first moments). By using the maximum entropy methodology one obtains the least biased probability density function satisfying the system's constraints. The analysis of the three controllable M/G/1 queueing models provides a parallel numerical study of the solution obtained via the maximum entropy approach versus “classical” solutions. The maximum entropy analysis of a continuous system descriptor (like the busy period) enriches the current body of literature which, in most cases, reduces to discrete queueing measures (such as the number of customers in the system).
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15682
dc.identifier.doi10.1051/ro:2004020
dc.identifier.issn1290-3868
dc.identifier.officialurlhttp://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8225197
dc.identifier.relatedurlhttp://www.cambridge.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50019
dc.issue.number3
dc.journal.titleRAIRO - Operations Research
dc.language.isoeng
dc.page.final213
dc.page.initial195
dc.publisherEDP Sciences
dc.relation.projectIDBFM2002-02189
dc.rights.accessRightsopen access
dc.subject.cdu519.8
dc.subject.keywordBusy period analysis
dc.subject.keywordmaximum entropy methodology
dc.subject.keywordM/G/1 vacation models
dc.subject.keywordnumerical inversion
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco1207 Investigación Operativa
dc.titleEntropy maximization and the busy period of some single-server vacation models
dc.typejournal article
dc.volume.number38
dcterms.referencesJ. Abate and W. Whitt, Numerical inversion of Laplace transforms of probability distributions. ORSA J. Comput. 7 (1995) 36–43. J.R. Artalejo, G-networks: A versatile approach for work removal in queueing networks. Eur. J. Oper. Res. 126 (2000) 233–249. J.R. Artalejo, On the M/G/1 queue with D-policy. Appl. Math. Modelling 25 (2001) 1055–1069. K.R. Balachandran and H. Tijms, On the D-policy for the M/G/1 queue. Manage. Sci. 21 (1975) 1073–1076. B.D. Bunday, Basic Optimization Methods. Edward Arnold, London (1984). B.T. Doshi, Queueing systems with vacations - A survey. Queue. Syst. 1 (1986) 29–66. M.A. El-Affendi and D.D. Kouvatsos, A maximum entropy analysis of the M/G/1 and G/M/1 queueing systems at equilibrium. Acta Inform. 19 (1983) 339–355. G.I. Falin, M. Martin and J.R. Artalejo, Information theoretic approximations for the M/G/1 retrial queue. Acta Inform. 31 (1994) 559–571. K.G. Gakis, H.K. Rhee and B.D. Sivazlian, Distributions and first moments of the busy period and idle periods in controllable M/G/1 queueing models with simple and dyadic policies. Stoch. Anal. Appl. 13 (1995) 47–81. E. Gelenbe, Product-form queueing networks with negative and positive customers. J. Appl. Prob. 28 (1991) 656–663. E. Gelenbe, G-networks: A unifying model for neural and queueing networks. Ann. Oper. Res. 48 (1994) 433–461. E. Gelenbe and R. Iasnogorodski, A queue with server of walking type (autonomous service). Annales de l’Institut Henry Poincaré, Series B 16 (1980) 63–73. S. Guiasu, Maximum entropy condition in queueing theory. J. Opl. Res. Soc. 37 (1986) 293–301. D. Heyman, The T-policy for the M/G/1 queue. Manage. Sci. 23 (1977) 775–778. L. Kleinrock, Queueing Systems, Volume 1: Theory. John Wiley & Sons, Inc., New York (1975). D.D. Kouvatsos, Entropy maximisation and queueing networks models. Ann. Oper. Res. 48 (1994) 63–126. Y. Levy and U. Yechiali, Utilization of idle time in an M/G/1 queueing system. Manage. Sci. 22 (1975) 202–211. J.A. Nelder and R. Mead, A simplex method for function minimization. Comput. J. 7 (1964) 308–313. W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes in Fortran, The Art of Scientific Computing. Cambridge University Press (1992). J.E. Shore, Information theoretic approximations for M/G/1 and G/G/1 queuing systems. Acta Inform. 17 (1982) 43–61. L. Tadj and A. Hamdi, Maximum entropy solution to a quorum queueing system. Math. Comput. Modelling 34 (2001) 19–27. H. Takagi, Queueing Analysis. Vol. 1–3, North-Holland, Amsterdam (1991). J. Teghem Jr., Control of the service process in a queueing system. Eur. J. Oper. Res. 23 (1986) 141–158. U. Wagner and A.L.J. Geyer, A maximum entropy method for inverting Laplace transforms of probability density functions. Biometrika 82 (1995) 887–892. K.H. Wang, S.L. Chuang and W.L. Pearn, Maximum entropy analysis to the N policy M/G/1 queueing systems with a removable server. Appl. Math. Modelling 26 (2002) 1151–1162. M. Yadin and P. Naor, Queueing systems with a removable server station. Oper. Res. Quar. 14 (1963) 393–405.
dspace.entity.typePublication
relation.isAuthorOfPublicationdb4b8a04-44b0-48e9-8b2c-c80ffae94799
relation.isAuthorOfPublication64a702cc-f8f5-468f-baeb-e37e92492a68
relation.isAuthorOfPublication.latestForDiscovery64a702cc-f8f5-468f-baeb-e37e92492a68

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
arta37.pdf
Size:
312.77 KB
Format:
Adobe Portable Document Format

Collections