Glucose forecasting using genetic programming and latent glucose variability features

dc.contributor.authorContador, Sergio
dc.contributor.authorVelasco Cabo, José Manuel
dc.contributor.authorGarnica Alcázar, Antonio Óscar
dc.contributor.authorHidalgo Pérez, José Ignacio
dc.date.accessioned2025-01-30T15:37:01Z
dc.date.available2025-01-30T15:37:01Z
dc.date.issued2021
dc.description.abstractThis paper investigates a set of genetic programming methods to obtain accurate predictions of subcutaneous glucose values from diabetic patients. We explore the usefulness of different features that identify the latent glucose variability. New features, including average glucose, glucose variability and glycemic risk, are generated as input variables of the genetic programming algorithm in order to improve the accuracy of the models in the prediction phase. The performance of traditional genetic programming, and models created with classified glucose values, are compared to those using latent glucose variability features. We experimented with a set of 18 different features and we also performed a study of the importance of the variables in the models. The Bayesian statistical analysis shows that the use of glucose variability as latent variables improved the predictions of the models, not only in terms of RMSE, but also in the reduction of dangerous predictions, i.e., those predictions that could lead to wrong decisions in the clinical practice.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.doi10.1016/J.ASOC.2021.107609
dc.identifier.officialurlhttps://www.sciencedirect.com/science/article/pii/S1568494621005305?via%3Dihub
dc.identifier.urihttps://hdl.handle.net/20.500.14352/117371
dc.journal.titleApplied Soft Computing
dc.language.isoeng
dc.page.final12
dc.page.initial1
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordDiabetes
dc.subject.keywordContinuous glucose monitoring
dc.subject.keywordGlucose variability
dc.subject.keywordGenetic programming
dc.subject.ucmInformática (Informática)
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleGlucose forecasting using genetic programming and latent glucose variability features
dc.typejournal article
dc.volume.number110
dspace.entity.typePublication
relation.isAuthorOfPublicationce8731c7-a3bb-4010-98d9-e9b72622941b
relation.isAuthorOfPublication33d1dfc8-7bd7-4f4d-ac77-e9c369e8d82e
relation.isAuthorOfPublication981f825f-2880-449a-bcfc-686b866206d0
relation.isAuthorOfPublication.latestForDiscoveryce8731c7-a3bb-4010-98d9-e9b72622941b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Glucose_forecasting.pdf
Size:
4.36 MB
Format:
Adobe Portable Document Format

Collections