Dynamic programming revisited: a generalized formalism for arbitrary ray trajectories in inhomogeneous optical media with radial dependence
| dc.contributor.author | Calvo Padilla, María Luisa | |
| dc.contributor.author | Pérz Ríos, Jesús | |
| dc.date.accessioned | 2023-06-20T03:39:36Z | |
| dc.date.available | 2023-06-20T03:39:36Z | |
| dc.date.issued | 2009-12 | |
| dc.description | © 2009 IOP Publishing Ltd. The financial support of the Spanish Ministry of Science and Innovation under Grant TEC2008-04125 and CAM-CG-300 is acknowledged. One of us (JPR) acknowledges the Consejo Superior de Investigaciones Científicas (CSIC) for the grant accorded (JAE-pre Fellowship). We are indebted to V. Lakshminarayanan for helpful suggestions and discussions. | |
| dc.description.abstract | We present a formalism based upon dynamic programming (DP), to characterize light propagation in particular GRIN (gradient index) media by analyzing ray trajectories associated with skew-type rays. We study the conditions for the formation of periodic trajectories and stability of the system. We perform a comparative study with the classical formalism based on the Hamilton-Jacobi equation. The DP formalism allows representation in phase (momentum) space. | |
| dc.description.department | Depto. de Óptica | |
| dc.description.faculty | Fac. de Ciencias Físicas | |
| dc.description.refereed | TRUE | |
| dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN), España | |
| dc.description.sponsorship | Consejo Superior de Investigaciones Científicas (CSIC), España | |
| dc.description.status | pub | |
| dc.eprint.id | https://eprints.ucm.es/id/eprint/25450 | |
| dc.identifier.doi | 10.1088/1464-4258/11/12/125403 | |
| dc.identifier.issn | 1464-4258 | |
| dc.identifier.officialurl | http://dx.doi.org/10.1088/1464-4258/11/12/125403 | |
| dc.identifier.relatedurl | http://iopscience.iop.org/ | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/44185 | |
| dc.issue.number | 12 | |
| dc.journal.title | Journal of Optics A. Pure and Applied Optics | |
| dc.language.iso | eng | |
| dc.publisher | IOP Publishing Ltd. | |
| dc.relation.projectID | JAE-pre Fellowship | |
| dc.relation.projectID | TEC2008-04125 | |
| dc.relation.projectID | CAM-CG- 300 | |
| dc.rights.accessRights | open access | |
| dc.subject.cdu | 535 | |
| dc.subject.keyword | Gradient-Index Media | |
| dc.subject.keyword | Fermats Principle | |
| dc.subject.keyword | Eikonal Equation | |
| dc.subject.ucm | Óptica (Física) | |
| dc.subject.unesco | 2209.19 Óptica Física | |
| dc.title | Dynamic programming revisited: a generalized formalism for arbitrary ray trajectories in inhomogeneous optical media with radial dependence | |
| dc.type | journal article | |
| dc.volume.number | 11 | |
| dcterms.references | [1] Bellman R E 1957 Dynamic Programming (Princeton, NJ: Princeton University Press). [2] Lee C L and Dana R A 2003 Dynamic Programming in Economics (Berlin: Springer). [3] Joseph S and Lakshminarayanan V 2002 Proc. 1st Int. Conf. on Quantum Limits to the Second Law AIP Conf. Proc. 643 297. [4] Edd S R 2002 BMC Bioinform. 3 18. [5] Sieniutycz S 2009 Appl. Math. Mod. 33 1457. [6] Calvo M L and Lakshminarayanan V 1987 J. Opt. Soc. Am. A 14 872. [7] Calvo M L and Lakshminarayanan V 1999 Opt. Commun. 169 223. [8] Lakshminarayanan V, Ghatak A K and Thyagarajan K 2002 Lagrangian Optics (Dordrecht: Kluwer). [9] Kalaba R 1961 J. Opt. Soc. Am. 51 1150. [10] Brandstatter J J 1974 J. Opt. Soc. Am. 64 317. [11] Sands P J 1983 Appl. Opt. 22 430. [12] Van Turnhout M and Bociort F 2009 Opt. Express 17 314. [13] Molloy J E and Padgett M J 2002 Contemp. Phys. 43 241. [14] Elsgoltz L 1996 Differential Equations and Variational Calculus (Russia: Mir) (in Spanish) The Lagrange-Sharpy method consists in transforming an initial equation in a Pfaff equation using an auxiliary scalar function Elsgoltz L 1962 Calculus of Variation (Reading, MA: Addison-Wesley) (in English). [15] Migayi H and Taniguchi T 1981 IEE Proc. 128 117. [16] Bociort F and Kross J 1993 Proc. SPIE 1780 216. [17] Marchand E W 1972 Appl. Opt. 11 1104. [18] Luneburg R K 1964 Mathematical Theory of Optics (Berkeley, CA: University of California Press). [19] Kline M and Kay I W 1965 Electromagnetic Theory and Geometrical Optics (New York: Wiley-Interscience). [20] Miñano J C, Benítez P and Santamaría A 2006 Opt. Express 14 9083. [21] Press W H, Flannery B P, Teukolsky S A and Vetterling W T 1986 Numerical Recipes, The Art of Scientific Computing (Cambridge: Cambridge University Press). [22] José J V and Saletan E J 1998 Classical Dynamics: A Contemporary Approach (Cambridge: Cambridge University Press). [23] Landau L and Lifschitz E 1994 Mechanics (Barcelona: Reverté) (Spanish edition). [24] Roberts M J 2003 Signals and Systems: Analysis of Signals Through Linear Systems (New York: McGraw-Hill Science Engineering). [25] See for example McNeillie F C, Thomsom J and Ruddock I S 2004 Eur. J. Phys. 25 479 ; Moore D T 1975 J. Opt. Soc. Am. 65 451 ; Ghatak A K and Sauter E G 1989 Eur. J. Phys. 10 136 [26] Moore D T 1993 Selected Papers on Gradient-Index Optics (SPIE Milestone Series vol MS67) (Bellingham, WA: SPIE Optical Engineering Press). [27] Gómez-Reino C, Pérez M V, Bao C and Flores-Arias M T 2008 Laser Photon. Rev. 2 203. [28] Murukeshan V M 2007 Biomedical fiber optics Optical Waveguides: From Theory to Applied Technologies ed M L Calvo and V Lakshminarayanan (Boca Raton, FL: CRC Press) chapter 10. | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | e2846481-608d-43dd-a835-d70f73a4dd48 | |
| relation.isAuthorOfPublication.latestForDiscovery | e2846481-608d-43dd-a835-d70f73a4dd48 |
Download
Original bundle
1 - 1 of 1


