Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Comparative study of liquid uptake and permeation characteristics of sulfonated cation-exchange membranes in water and methanol

dc.contributor.authorBarragán García, Vicenta María
dc.contributor.authorGarcía Villaluenga, Juan Pedro
dc.contributor.authorIzquierdo Gil, María Amparo
dc.contributor.authorGodino Gómez, María Paz
dc.contributor.authorSeoane Rodríguez, Benjamín
dc.contributor.authorRuiz Bauzá, Carlos
dc.date.accessioned2023-06-20T10:33:56Z
dc.date.available2023-06-20T10:33:56Z
dc.date.issued2008-10-15
dc.description© 2008 Elsevier B.V. The authors of this study gratefully acknowledge Prof. C. Larchet and Prof. V. Nikonenko for donating MK40 membrane samples. Financial support from Comunidad de Madrid and Universidad Complutense de Madrid under Project CCG06-UCM/MAT-1037 is also gratefully acknowledged.
dc.description.abstractLiquid permeation and uptake measurements of pure water and methanol were carried out using three commercial cation-exchange membranes: Nafion-117 (perfluorinated polyethylene with pendant ether-linked side chains terminated with sulfonated groups), MK-40 (microparticles of polystyrene-divinylbenzene with sulfonic groups randomly dispersed in a polyethylene matrix) and CR61-CZL-412 (crosslinked sulfonated copolymer of styrene-divinylbenzene). Methanol uptake by the Nafion-117 membrane was higher than that of water, in contrast, for MK-40 and CR61-CZL-412 membranes the opposite behavior is observed. Differences in the water and methanol liquid uptakes by the membranes were discussed in terms of the chemical interaction between the liquids and the polymers, and also on the size of the liquid molecules. On the other hand, the methanol permeation flow values through the membranes were higher than those of water for all the studied membranes.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20638
dc.identifier.doi10.1016/j.memsci.2008.06.049
dc.identifier.issn0376-7388
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.memsci.2008.06.049
dc.identifier.relatedurlhttp://pdn.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50545
dc.issue.number2
dc.journal.titleJournal of Membrane Science
dc.language.isoeng
dc.page.final427
dc.page.initial421
dc.publisherElsevier Science BV
dc.relation.projectIDCCG06-UCM/MAT-1037
dc.rights.accessRightsrestricted access
dc.subject.cdu536
dc.subject.keywordFuel-Cells
dc.subject.keywordNafion Membrane
dc.subject.keywordElectrolyte-Solutions
dc.subject.keywordTransport-Properties
dc.subject.keywordIonomer Membranes
dc.subject.keywordPolar Materials
dc.subject.keywordSelf-Diffusion
dc.subject.keywordDrinking-Water
dc.subject.keywordVapor Sorption
dc.subject.keywordIon.
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleComparative study of liquid uptake and permeation characteristics of sulfonated cation-exchange membranes in water and methanol
dc.typejournal article
dc.volume.number323
dcterms.references[1] P. Prakash, D. Hoskins, A.K. SenGupta, Application of homogeneous and heterogeneous cation-exchange membranes in coagulant recovery from water treatment plant residuals using Donnan membrane process, J. Membr. Sci. 237 (2004) 131. [2] C. Larchet, G. Eigenberger, A. Tshkay, K. Tastanov, V. Nikonenko, Application of electromembrane technology for providing drinking water for the population of the Aral region, Desalination 149 (2002) 383. [3] J.H.Wee, Applications of proton exchangemembrane fuel cell systems, Renew. Sustain. Energy Rev. 11 (2007) 1720. [4] M.Y. Kariduraganavar, R.K. Nagarale, A.A. Kittur, S.S. Kulkarni, Ion-exchange membranes: preparative methods for electrodialysis and fuel cell applications, Desalination 197 (2006) 225. [5] E. Volodina, N. Pismenskaya, V. Nikonenko, C. Larchet, G. Pourcelly, Ion transfer across ion-exchange membranes with homogeneous and heterogeneous surfaces, J. Colloid Interface Sci. 285 (2005) 247. [6] W.S. Winston Ho, K.K. Sirkar, Membrane Handbook, Van Nostrand Reinhold, New York, NY, 1992. [7] J.H. Choi, S.H. Kim, S.H. Moon, Heterogeneity of ion-exchange membranes: the effects ofmembrane heterogeneity on transport properties, J. Colloid Interface Sci. 241 (2001) 120. [8] P.W. Majsztrik, M.B. Satterfield, A.B. Bocarsly, J.B. Benziger, Water sorption, desorption and transport in Nafion membranes, J. Membr. Sci. 301 (2007) 93. [9] W. Kujawski, M. Staniszewski, T.Q. Nguyen, Transport parameters of alcohol vapors through ion-exchange membranes, Sep. Purif. Technol. 57 (2006) 476. [10] R.K.Nagarale, G.S. Gohil, V. Shahi, Recent developments on ion-exchangemembranes and electro-membrane processes, Adv. Colloid Interface Sci. 119 (2006) 97. [11] T. Xu, Ion exchange membranes: state of their development and perspective, J. Membr. Sci. 263 (2005) 1. [12] M.W. Verbrugge, R.F. Hill, Ion and solvent transport in ion-exchange membranes, J. Electrochem. Soc. 137 (1990) 886. [13] S. Koter, Transport of simple electrolyte solutions through ion-exchange membranes—the capillary model, J. Membr. Sci. 206 (2002) 201. [14] J. Palomo, P.N. Pintauro, Competitive adsorption of quaternary ammonium and alkali metal cations into a Nafion cation-exchange membrane, J. Membr. Sci. 215 (2003) 103. [15] L. Chaabane, L. Dammark, V.V. Nikonenko, G. Bulvestre, B. Auclair, The influence of absorbed methanol on the conductivity and on the microstructure of ionexchange membranes, J. Membr. Sci. 298 (2007) 126. [16] V.I. Zabolotsky, V.V. Nikonenko, Effect of structural membrane inhomogeneity on transport properties, J. Membr. Sci. 79 (1993) 181. [17] J.P.G. Villaluenga, V.M. Barragán, B. Seoane, C. Ruiz-Bauzá, Sorption and permeation of solutions of chloride salts, water and methanol in a Nafion membrane, Electrochim. Acta 51 (2006) 6297. [18] J.P.G. Villaluenga, B. Seoane, V.M. Barragán, C. Ruiz-Bauzá, Thermo-osmosis of mixtures of water and methanol through a Nafion membrane, J. Membr. Sci. 274 (2006) 116. [19] V.M. Barragán, C. Ruiz-Bauzá, J.P.G. Villaluenga, B. Seoane, Simultaneous electroosmotic and permeation flows through a Nafion membrane. 2. Methanol–water electrolyte solutions, J. Colloid Interface Sci. 288 (2005) 540. [20] K.A. Mauritz, R.B. Moore, State of understanding of Nafion, Chem. Rev. 104 (2004) 4535. [21] C. Heitner-Wirguin, Recent advances in perfluorinated ionomer membranes: structure, properties and applications, J. Membr. Sci. 120 (1996) 1. [22] J.P.G. Villaluenga, B. Seoane, V.M. Barragán, C. Ruiz-Bauzá, Permeation of electrolyte water–methanol solutions through a Nafion membrane, J. Colloid Interface Sci. 268 (2003) 476. [23] G. Suresh, Y.M. Scindia, A.K. Pandey, A. Goswami, Self-diffusion coefficient of water in Nafion-117 membrane with different monovalent counterions: a radiotracer study, J. Membr. Sci. 250 (2005) 39. [24] A. Goswami, A. Acharya, A.K. Pandey, Study of self-diffusion of monovalent and divalent cations in Nafion-117 ion-exchange membrane, J. Phys. Chem. B 105 (2001) 9196. [25] D. Nandan, H. Mohan, R.M. Iyer, Methanol and water uptake, densities, equivalental volumes and thicknesses of several uni- and divalent ionic perfluorosulphonate exchange membranes (Nafion-117) and their methanol–water fractionation behaviour at 298K, J. Membr. Sci. 71 (1992)69. [26] D. Rivin, C.E. Kendrick, P.W. Gibson, N.S. Schneider, Solubility and transport behavior of water and alcohols in NafionTM, Polymer 42 (2001) 623. [27] C.E. Evans, R.D. Noble, S. Nazeri-Thompson, B. Nazeri, C.A. Koval, Role of conditioning on water uptake and hydraulic permeability of Nafion® membranes, J. Membr. Sci. 279 (2006) 521. [28] E. Skou, P. Kauranen, J. Hentschel, Water and methanol uptake in proton conducting Nafion® membranes, Solid State Ionics 97 (1997) 333. [29] K. Kesore, F. Janowski, V.A. Shaposhnik, Highly effective electrodialysis for selective elimination of nitrates from drinking water, J. Membr. Sci. 127 (1997) 17. [30] C. Larchet, B. Auclair, V. Nikonenko, Approximate evaluation of water transport number in ion-exchange membranes, Electrochim. Acta 49 (2004) 1711. [31] A. Jonquières, L. Perrin, A. Durand, S. Arnold, P. Lochon, Modelling of vapour sorption in polar materials: comparison of Flory–Huggins and related models with the ENSIC mechanistic approach, J. Membr. Sci. 147 (1998) 59. [32] A. Jonquières, L. Perrin, S. Arnold, P. Lochon, Comparison of UNIQUAC with related models formodelling vapour sorption in polar materials, J. Membr. Sci. 150 (1998) 125. [33] T.D. Gierke, G.E. Munn, F.C. Wilson, The morphology in Nafion perfluorinated membrane products, as determined by wide- and small-angle X-ray studies, J. Polym. Sci., Polym. Phys. 19 (1981) 1687. [34] K.D. Kreuer, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, J. Membr. Sci. 185 (2001) 29. [35] P. Dimitrova, K.A. Friedrich, B. Vogt, U. Stimmimg, Transport properties of ionomer composite membranes for direct methanol fuel cells, J. Electroanal. Chem. 532 (2002) 75. [36] J.P.G. Villaluenga, M. Khayet, M.P. Godino, B. Seoane, J.I. Mengual, Pervaporation of toluene/alcohol mixtures through a coextruded linear low-density polyethylene membrane, Ind. Eng. Chem. Res. 42 (2003) 386. [37] V. Freger, E. Korin, J. Wisniak, E. Korngold, Preferential sorption in ion-exchange pervaporation membranes: sorption of water–ethanol mixture by sodium polyethylene sulphonate, J. Membr. Sci. 128 (1997) 151. [38] J. Schauer, L. Broˇzová, Heterogeneous ion-exchange membranes based on sulfonated poly(1,4-phenylene sulfide) and linear polyethylene: preparation, oxidation stability, methanol permeability and electrochemical properties, J. Membr. Sci. 250 (2005) 151. [39] S. Savari, S. Sachdeva,A.Kumar, Electrolysis of sodium chloride using composite poly(styrene-co-divinylbenzene) cation exchange membranes, J. Membr. Sci. 310 (2008) 246. [40] A. Lehmani, P. Turq, M. Perie, J. Perie, J.P. Simonin, Ion transport in Nafion®117 membrane, J. Electroanal. Chem. 428 (1997) 81. [41] K. Ramya, K.S. Dhathathreyan, Direct methanol fuel cells: determination of fuel crossover in a polymer electrolytemembrane, J. Electroanal. Chem. 542 (2003) 109. [42] S. Koter, Transport of single electrolyte solutions through ion-exchange membranes—the capillary model, J. Membr. Sci. 206 (2002) 201. [43] M. Eikerling, Yu.I. Kharkats, A.A. Kornyshev, Yu.M. Volfkovich, Phenomenological theory of electro-osmotic effect and water management in polymer electrolyte proton- conducting membranes, J. Electrochem. Soc. 145 (1998) 2684. [44] F. Meier, G. Eigenberger, Transport parameters for the modelling ofwater transport in ionomer membranes for PEM-fuel cells, Electrochim. Acta 49 (2004) 1731. [45] P. Costamagna, Transport phenomena in polymeric membrane fuel cells, Chem. Eng. Sci. 56 (2001) 323. [46] J. Ceynova, Pore model parameters of cation-exchange membranes, Angew. Makromol. Chem. 121 (1984) 97. [47] J. García-Alemán, J.M. Dickson, Mathematical modeling of nanofiltration membranes with mixed electrolyte solutions, J. Membr. Sci. 235 (2004) 1. [48] V.H. Shahi, G.S. Trivedi, S.K. Thampy, R. Rangarajan, Studies on the electrochemical and permeation haracteristics of asymmetric charged porous membranes, J. Colloid Interface Sci. 262 (2003) 566.
dspace.entity.typePublication
relation.isAuthorOfPublicationd2c307ae-39ce-419e-a520-2e71b0d84e09
relation.isAuthorOfPublication767d7957-0d58-4121-ab42-43d9165389a9
relation.isAuthorOfPublication7577a695-65ee-44e1-b7aa-8945ac183fb5
relation.isAuthorOfPublication89cfc24c-28fa-46fc-9b17-8eafe78b3a89
relation.isAuthorOfPublication.latestForDiscoveryd2c307ae-39ce-419e-a520-2e71b0d84e09

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
BARRAGÁN9NO.pdf
Size:
532.35 KB
Format:
Adobe Portable Document Format

Collections