Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Connes' embedding problem and Tsirelson's problem

Loading...
Thumbnail Image

Full text at PDC

Publication date

2011

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Institute of Physics
Citations
Google Scholar

Citation

Abstract

We show that Tsirelson's problem concerning the set of quantum correlations and Connes' embedding problem on finite approximations in von Neumann algebras (known to be equivalent to Kirchberg's QWEP conjecture) are essentially equivalent. Specifically, Tsirelson's problem asks whether the set of bipartite quantum correlations generated between tensor product separated systems is the same as the set of correlations between commuting C*-algebras. Connes' embedding problem asks whether any separable II$_1$ factor is a subfactor of the ultrapower of the hyperfinite II$_1$ factor. We show that an affirmative answer to Connes' question implies a positive answer to Tsirelson's. Conversely, a positve answer to a matrix valued version of Tsirelson's problem implies a positive one to Connes' problem.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections