Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Entangling non planar molecules via inversion doublet transition with negligible spontaneous emission

dc.contributor.authorGonzalo Fonrodona, Isabel
dc.contributor.authorAntón Revilla, Miguel Ángel
dc.date.accessioned2023-06-17T13:28:35Z
dc.date.available2023-06-17T13:28:35Z
dc.date.issued2019-05-28
dc.description© the Owner Societies 2019. We are very grateful to Miguel A. Porras and Fernando Carreno for technical help. We acknowledge support from Project FIS2017-87360-P, and I. G. acknowledges also support from Project FIS2016-76110-P, both projects from the Spanish Ministerio de Economía y Competitividad (MINECO).
dc.description.abstractWe analyze theoretically the entanglement between two non-planar and light identical molecules (e.g., pyramidal NH3) that present inversion doubling due to the internal spatial inversion of their nuclear conformations by tunneling. The peculiarity of this system lies in the simplicity of this type of molecular system in which two near levels can be connected by an allowed electric dipole transition with considerable value of the dipole moment transition and negligible spontaneous emission because the transition is in the microwave or far-infrared range. These properties give place to entanglement states oscillating by free evolution with frequency determined by the dipole-dipole interaction and negligible spontaneous decay, which allows consideration of an efficient quantum Zeno effect by frequent measurements of one of the entangled states. If the molecules are initially both in the upper (or lower) eigenstate, the system evolves under an external radiation field, which can induce oscillations of the generated entangled states, with frequency of the order of the Rabi frequency of the field. For a certain detuning, a symmetric entangled state, which is an eigenstate of the collective system, can be populated, and given its negligible spontaneous emission, could be maintained for a time limited only by external decoherence processes, which could be minimized. Although the data used are those of the NH3 molecule, other molecules could present the same advantageous features.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/57050
dc.identifier.doi10.1039/c8cp07764a
dc.identifier.issn1463-9076
dc.identifier.officialurlhttp://dx.doi.org/10.1039/c8cp07764a
dc.identifier.relatedurlhttps://pubs.rsc.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/13577
dc.issue.number20
dc.journal.titlePhysical chemistry chemical physics
dc.language.isoeng
dc.page.final10531
dc.page.initial10523
dc.publisherRoyal Society of Chemistry
dc.relation.projectID(FIS2017-87360-P; FIS2016-76110-P)
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordQuantum
dc.subject.keywordEntanglement
dc.subject.keywordDecoherence
dc.subject.keywordState
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleEntangling non planar molecules via inversion doublet transition with negligible spontaneous emission
dc.typejournal article
dc.volume.number21
dspace.entity.typePublication
relation.isAuthorOfPublicationc1ad80a2-9d2c-49ce-b112-8e3dfa47d18c
relation.isAuthorOfPublicationa59c3727-c018-4ce7-84d5-24f3a2f3de79
relation.isAuthorOfPublication.latestForDiscoveryc1ad80a2-9d2c-49ce-b112-8e3dfa47d18c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gonzalo,I 14 POSTPRINT+EMB 28-may-2020.pdf
Size:
759.37 KB
Format:
Adobe Portable Document Format

Collections