On compactifications and product‐free sets
dc.contributor.author | Palacín Cruz, Daniel | |
dc.date.accessioned | 2024-02-03T14:44:20Z | |
dc.date.available | 2024-02-03T14:44:20Z | |
dc.date.issued | 2019-07-24 | |
dc.description.abstract | A subset of a group is said to be product free if it does not contain three elements satisfying the equation x·y=z. We give a negative answer to a question of Babai and Sós on the existence of large product-free sets in finite groups by model theoretic means. This question was originally answered by Gowers. Furthermore, we give a natural and sufficient model theoretic condition for a group to have a large product-free subset, as well as a model theoretic account of a result of Nikolov and Pyber on triple products. | en |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.identifier.citation | Palacín, Daniel. «On Compactifications and Product‐free Sets». Journal of the London Mathematical Society 101, n.o 1 (febrero de 2020): 156-74. https://doi.org/10.1112/jlms.12263. | |
dc.identifier.doi | 10.1112/jlms.12263 | |
dc.identifier.issn | 0024-6107 | |
dc.identifier.issn | 1469-7750 | |
dc.identifier.officialurl | https//doi.org/10.1112/jlms.12263 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/98558 | |
dc.issue.number | 1 | |
dc.journal.title | Journal of the London Mathematical Society | |
dc.language.iso | eng | |
dc.page.final | 174 | |
dc.page.initial | 156 | |
dc.publisher | London Mathematical Society | |
dc.rights.accessRights | open access | |
dc.subject.ucm | Lógica simbólica y matemática (Matemáticas) | |
dc.subject.unesco | 1102.10 Teoría de Modelos | |
dc.subject.unesco | 1202.05 Análisis Combinatorio | |
dc.title | On compactifications and product‐free sets | en |
dc.type | journal article | |
dc.volume.number | 101 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f173a7c4-2532-4caf-8464-59f9fd9483c6 | |
relation.isAuthorOfPublication.latestForDiscovery | f173a7c4-2532-4caf-8464-59f9fd9483c6 |
Download
Original bundle
1 - 1 of 1