Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

On compactifications and product‐free sets

dc.contributor.authorPalacín Cruz, Daniel
dc.date.accessioned2024-02-03T14:44:20Z
dc.date.available2024-02-03T14:44:20Z
dc.date.issued2019-07-24
dc.description.abstractA subset of a group is said to be product free if it does not contain three elements satisfying the equation x·y=z. We give a negative answer to a question of Babai and Sós on the existence of large product-free sets in finite groups by model theoretic means. This question was originally answered by Gowers. Furthermore, we give a natural and sufficient model theoretic condition for a group to have a large product-free subset, as well as a model theoretic account of a result of Nikolov and Pyber on triple products.en
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationPalacín, Daniel. «On Compactifications and Product‐free Sets». Journal of the London Mathematical Society 101, n.o 1 (febrero de 2020): 156-74. https://doi.org/10.1112/jlms.12263.
dc.identifier.doi10.1112/jlms.12263
dc.identifier.issn0024-6107
dc.identifier.issn1469-7750
dc.identifier.officialurlhttps//doi.org/10.1112/jlms.12263
dc.identifier.urihttps://hdl.handle.net/20.500.14352/98558
dc.issue.number1
dc.journal.titleJournal of the London Mathematical Society
dc.language.isoeng
dc.page.final174
dc.page.initial156
dc.publisherLondon Mathematical Society
dc.rights.accessRightsopen access
dc.subject.ucmLógica simbólica y matemática (Matemáticas)
dc.subject.unesco1102.10 Teoría de Modelos
dc.subject.unesco1202.05 Análisis Combinatorio
dc.titleOn compactifications and product‐free setsen
dc.typejournal article
dc.volume.number101
dspace.entity.typePublication
relation.isAuthorOfPublicationf173a7c4-2532-4caf-8464-59f9fd9483c6
relation.isAuthorOfPublication.latestForDiscoveryf173a7c4-2532-4caf-8464-59f9fd9483c6

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ProductFreeAccepted.pdf
Size:
335.21 KB
Format:
Adobe Portable Document Format

Collections