Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Time-resolved cathodoluminescence and photocurrent study of the yellow band in Si-doped GaN

dc.contributor.authorDíaz-Guerra Viejo, Carlos
dc.contributor.authorPiqueras De Noriega, Francisco Javier
dc.contributor.authorCastaldini, A.
dc.contributor.authorCavallini, A.
dc.contributor.authorPolenta, L.
dc.date.accessioned2023-06-20T10:45:15Z
dc.date.available2023-06-20T10:45:15Z
dc.date.issued2003-08-15
dc.description© 2003 American Institute of Physics. The authors wish to thank D. C. Look, H. Morkoc¸ and J. van Nostrand for providing the investigated material. C. D.-G. acknowledges M. E. C. D. for a postdoctoral research grant. This work has been partially supported by MCYT through Project No. MAT2000-2119.
dc.description.abstractTime-resolved cathodoluminescence (TRCL) and photocurrent (PC) spectroscopies have been applied to the study of the yellow band of Si-doped GaN. Measurements carried out combining both techniques unambiguously reveal the complex nature of this broad emission and confirm that different deep defect levels are involved in the observed luminescence. Five emission bands centered at 1.89, 2.03, 2.16, 2.29, and 2.38 eV were found by steady state and time-resolved CL investigations, while PC spectra showed four transitions at about 2.01, 2.14, 2.28, and 2.43 eV. The behavior of the deep-level emissions intensity as a function of the excitation pulse width as well as their decay times were investigated by TRCL. A decay time of 245 mus was measured for the 2.29 eV emission band, while longer decay times of 315 and 340 mus were found, respectively, for the 2.16 and 2.38 eV bands, in agreement with TRCL spectra. The appearance of the 2.03, 2.16, 2.29 eV and 2.38-2.43 eV peaks both in PC and CL spectra suggests that these bands are related to deep acceptor to band transitions, as supported by the single exponential character of the corresponding decay transients.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMCYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26241
dc.identifier.doi10.1063/1.1592296
dc.identifier.issn0021-8979
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.1592296
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51151
dc.issue.number4
dc.journal.titleJournal of Applied Physics
dc.language.isoeng
dc.page.final2346
dc.page.initial2341
dc.publisherAmerican Institute of Physics
dc.relation.projectIDMAT2000-2119
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordChemical-Vapor-Deposition
dc.subject.keywordFreestanding Gan
dc.subject.keywordEpitaxial-Films
dc.subject.keywordLuminescence
dc.subject.keywordPhotoluminescence
dc.subject.keywordExcitation
dc.subject.keywordVacancies
dc.subject.keywordEnergies
dc.subject.keywordDonors
dc.subject.keywordLayers
dc.subject.ucmFísica de materiales
dc.titleTime-resolved cathodoluminescence and photocurrent study of the yellow band in Si-doped GaN
dc.typejournal article
dc.volume.number94
dcterms.references1. S. O. Kucheyev, M. Toth, M. R. Phillips, J. S. Williams, C. Jagadish, and G. Li, J. Appl. Phys. 91, 5876 (20029. 2. I. Shalish, L. Kronik, G. Segal, Y. Rosenwaks, Y. Shapira, U. Tisch, and J. Salzman, Phys. Rev. B 59, 9748 819999. 3. H. Morkoc, Mater. Sci. Eng., R. 33, 135 (2001), and references therein. 4. J. Neugebauer and C. G. Van de Walle, Appl. Phys. Lett. 69, 503 (1996). 5. D. M. Hoffmann, D. Kovalev, G. Stende, B. K. Meyer, A. Hoffmann, L. Eckey, R. Heitz, T. Detchprom, A. Amano, and I. Akasaki, Phys. Rev. B 52, 16072 (1995). 6. E. R. Glasser, T. A. Kennedy, K. Dovverspike, L. B. Rowland, J. A. Freitas, D. T. Olson, J. N. Kuznia, and D. W. Wickenden, Phys. Rev. B 51, 13326 (1995). 7. E. Calleja, F. J. Sánchez, D. Basak, M. A. Sánchez-García, E. Muñoz, I Izpura, F. Calle, J. M. G. Tijero, and J. L. Sánchez-Rojas, Phys. Rev. B 55, 4689 (1997). 8. R. Y. Korotkov, M. A. Reshchikov, and B. W. Wessels, Physica B 273, 274, 80 (1999). 9. H. Haag, B. Hönerlage, O. Briot, and R. L. Aulombard, Phys. Rev. B 60, 11624 (1999). 10. M. Herrera Zaldívar P. Fernández, and J. Piqueras, Semicond. Sci. Technol. 13, 900 (1998). 11. R. Zhang and T. F. Kuech, Appl. Phys. Lett. 72, 1611 (1998). 12. J. S. Colton, P. Y. Yu, K. L. Teo, E. R. Weber, P. Perlin, I. Grzegory, and K. Uchida, Appl. Phys. Lett. 75, 3273 (1999). 13. F. A. Ponce, D. P. Bour, W. Go¨tz, and P. J. Wright, Appl. Phys. Lett. 68, 57 (1996). 14. A. Cremades, J. Piqueras, C. Xavier, T. Monteiro, E. Pereira, B. K. Meyer, D. M. Hofmann, and S. Fischer, Mater. Sci. Eng., B 42, 230 (1996). 15. M. Herrera Zaldıívar, P. Fernández, and J. Piqueras, J. Appl. Phys. 83, 2796 (1998). 16. Y.-H. Kwon, S K. Shee, G. H. Gainer, G. H. Park, S. J. Hwang, and J. J. Song, Appl. Phys. Lett. 76, 840 (2000). 17. B. G. Yacobi and D. B. Holt, Cathodoluminescence Microscopy of Inorganic Solids (Plenum, New York, 1990). 18.S. J. Chung, M. S. Jeong, O. H. Cha, C. H. Hong, E. K. Suh, H. J. Lee, Y. S. Kim, and B. H. Kim, Appl. Phys. Lett. 76, 1021 (2000). 19. A. Castaldini, A. Cavallin L. Polenta, and G. Salviati, Solid State Phenom. 78, 79, 95 (2001). 20. A. Urbieta, P. Fernández, J. Piqueras, Ch. Hardalov, and T. Sekiguchi, J. Phys. D 34, 2945 (2001). 21. X. Li and J. Coleman, Appl. Phys. Lett. 70, 438 (1997). 22. S. O. Kucheyev, M. Toth, M. R. Phillips, J. S. Williams, and C. Jagadish, Appl. Phys. Lett. 79, 2154 (2001). 23. A. Billeb, W. Grieshaber, D. Stocker, E. F. Schubert, and R. F. Karlicek, Appl. Phys. Lett. 70, 2790 (1997). 24. G. Salviati, C. Zanotti-Fregonara, M. A. Albretch, S. Christiansen, H. P. Strunk, M. Mayer, A. Pelzmann, M. Kamp, K. J. Ebeling, M. D. Bremser, R. F. Davis, and Y. G. Shreter, Inst. Phys. Conf. Ser. 157, 199 (1997). 25. D. Bimberg, H. Münzel, A. Steckenborn, and J. Christen, Phys. Rev. B 31, 7788 (1985). 26. K. Saarinen, T. Laine, S. Kuisma, J. Nissilä, P. Hautojärvi, L. Dobrzynski, J. M. Baranowski, K. Pakula, R. Stepniewski, M. Wojdak, A. Wysmolek, T. Suski, M. Leszczynski, I. Grzegory, and S. Porowski, Phys. Rev. Lett. 79, 3030 (1997. 27. D. C. Reynolds, D. C. Look, B. Jogai, and R. J. Molnar, Appl. Phys. Lett. 89, 272 (2001). 28. J. B. Xia, K. W. Cheah, X. L. Wang, D. Z. Sun, and M. Y. Kong, Phys. Rev. B 59, 10119 (19999. 29. H. Wang and A. B. Chen, J. Appl. Phys. 87, 7859 (2000). 30. M. A. Reshchikov, D. Huang, F. Yun, L. He, H. Morkoc¸, C. C. Reynolds, S. S. Park, and K. Y. Lee, Appl. Phys. Lett. 79, 3779 (2001). 31. W. J. Moore, J. A. Freitas, G. C. Braga, R. J. Molnar, S. K. Lee, K. Y. Lee, and I. J. Song, Appl. Phys. Lett. 79, 2570 (2001). 32. W. Götz, N. M. Johnson, C. Chen, H. Liu, C. Kuo, and W. Imler, Appl. Phys. Lett. 68, 3144 (1996). 33. J. Japalayan, B. J. Skromme, R. P. Vaudo, and V. M. Phanse, Appl. Phys. Lett. 73, 1188 (1998). 34. R. Seitz, C. Gaspar, T. Monteiro, E. Pereira, M. Leroux, B. Beaumont, andP. Gibart, J. Cryst. Growth 189, 190, 546 (1998). 35. R. Seitz, C. Gaspar, T. Monteiro, E. Pereira, M. Leroux, B. Beaumont, and P. Gibart, MRS Internet J. Nitride Semicond. Res. 2, 36 (1997). 36. G. Thomas, J. J. Hopfield, and W. M. Augustyniak, Phys. Rev. 140, A202 (1965). 37. M. A. Reshchikov, R. J. Molnar, and H. Morkoc¸, Mater. Res. Soc. Symp. Proc. 680E, E5.6.1 (2001). 38. M. A. Reshchikov, H. Morkoc¸, S. S. Park, and K. Y. Lee, Appl. Phys. Lett. 78, 2882 (2001).
dspace.entity.typePublication
relation.isAuthorOfPublicationb1b44979-3a0d-45d7-aa26-a64b0dbfee18
relation.isAuthorOfPublication68dabfe9-5aec-4207-bf8a-0851f2e37e2c
relation.isAuthorOfPublication.latestForDiscoveryb1b44979-3a0d-45d7-aa26-a64b0dbfee18

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PiquerasJ126libre.pdf
Size:
320.29 KB
Format:
Adobe Portable Document Format

Collections